scholarly journals Vps13 is required for timely removal of nurse cell corpses

Development ◽  
2020 ◽  
Vol 147 (20) ◽  
pp. dev191759
Author(s):  
Anita I. E. Faber ◽  
Marianne van der Zwaag ◽  
Hein Schepers ◽  
Ellie Eggens-Meijer ◽  
Bart Kanon ◽  
...  

ABSTRACTProgrammed cell death and consecutive removal of cellular remnants is essential for development. During late stages of Drosophila melanogaster oogenesis, the small somatic follicle cells that surround the large nurse cells promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here, we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death. Vps13 is an evolutionarily conserved peripheral membrane protein associated with membrane contact sites and lipid transfer. It is expressed in late nurse cells, and persistent nurse cell remnants are observed when Vps13 is depleted from nurse cells but not from follicle cells. Microscopic analysis revealed enrichment of Vps13 in close proximity to the plasma membrane and the endoplasmic reticulum in nurse cells undergoing degradation. Ultrastructural analysis uncovered the presence of an underlying Vps13-dependent membranous structure in close association with the plasma membrane. The newly identified structure and function suggests the presence of a Vps13-dependent process required for complete degradation of bulky remnants of dying cells.

2021 ◽  
Vol 14 (9) ◽  
pp. 864
Author(s):  
Takuro Kobori ◽  
Chihiro Tanaka ◽  
Mayuka Tameishi ◽  
Yoko Urashima ◽  
Takuya Ito ◽  
...  

Programmed cell death ligand-1 (PD-L1), an immune checkpoint protein highly expressed on the cell surface in various cancer cell types, binds to programmed cell death-1 (PD-1), leading to T-cell dysfunction and tumor survival. Despite clinical successes of PD-1/PD-L1 blockade therapies, patients with colorectal cancer (CRC) receive little benefit because most cases respond poorly. Because high PD-L1 expression is associated with immune evasion and poor prognosis in CRC patients, identifying potential modulators for the plasma membrane localization of PD-L1 may represent a novel therapeutic strategy for enhancing the efficacy of PD-1/PD-L1 blockade therapies. Here, we investigated whether PD-L1 expression in human colorectal adenocarcinoma cells (LS180) is affected by ezrin/radixin/moesin (ERM), functioning as scaffold proteins that crosslink plasma membrane proteins with the actin cytoskeleton. We observed colocalization of PD-L1 with all three ERM proteins in the plasma membrane and detected interactions involving PD-L1, the three ERM proteins, and the actin cytoskeleton. Furthermore, gene silencing of ezrin and radixin, but not of moesin, substantially decreased the expression of PD-L1 on the cell surface without affecting its mRNA level. Thus, in LS180 cells, ezrin and radixin may function as scaffold proteins mediating the plasma membrane localization of PD-L1, possibly by post-translational modification.


Development ◽  
1997 ◽  
Vol 124 (22) ◽  
pp. 4661-4671 ◽  
Author(s):  
N.J. Clegg ◽  
D.M. Frost ◽  
M.K. Larkin ◽  
L. Subrahmanyan ◽  
Z. Bryant ◽  
...  

We describe a mutant, maelstrom, that disrupts a previously unobserved step in mRNA localization within the early oocyte, distinct from nurse-cell-to-oocyte RNA transport. Mutations in maelstrom disturb the localization of mRNAs for Gurken (a ligand for the Drosophila Egf receptor), Oskar and Bicoid at the posterior of the developing (stage 3–6) oocyte. maelstrom mutants display phenotypes detected in gurken loss-of-function mutants: posterior follicle cells with anterior cell fates, bicoid mRNA localization at both poles of the stage 8 oocyte and ventralization of the eggshell. These data are consistent with the suggestion that early posterior localization of gurken mRNA is essential for activation of the Egf receptor pathway in posterior follicle cells. Posterior localization of mRNA in stage 3–6 oocytes could therefore be one of the earliest known steps in the establishment of oocyte polarity. The maelstrom gene encodes a novel protein that has a punctate distribution in the cytoplasm of the nurse cells and the oocyte until the protein disappears in stage 7 of oogenesis.


1995 ◽  
Vol 182 (5) ◽  
pp. 1545-1556 ◽  
Author(s):  
S J Martin ◽  
C P Reutelingsperger ◽  
A J McGahon ◽  
J A Rader ◽  
R C van Schie ◽  
...  

A critical event during programmed cell death (PCD) appears to be the acquisition of plasma membrane (PM) changes that allows phagocytes to recognize and engulf these cells before they rupture. The majority of PCD seen in higher organisms exhibits strikingly similar morphological features, and this form of PCD has been termed apoptosis. The nature of the PM changes that occur on apoptotic cells remains poorly defined. In this study, we have used a phosphatidylserine (PS)-binding protein (annexin V) as a specific probe to detect redistribution of this phospholipid, which is normally confined to the inner PM leaflet, during apoptosis. Here we show that PS externalization is an early and widespread event during apoptosis of a variety of murine and human cell types, regardless of the initiating stimulus, and precedes several other events normally associated with this mode of cell death. We also report that, under conditions in which the morphological features of apoptosis were prevented (macromolecular synthesis inhibition, overexpression of Bcl-2 or Abl), the appearance of PS on the external leaflet of the PM was similarly prevented. These data are compatible with the notion that activation of an inside-outside PS translocase is an early and widespread event during apoptosis.


2001 ◽  
Vol 21 (11) ◽  
pp. 3775-3788 ◽  
Author(s):  
Yoshiro Nakano ◽  
Kazuko Fujitani ◽  
Joyce Kurihara ◽  
Janet Ragan ◽  
Kazue Usui-Aoki ◽  
...  

ABSTRACT Mutations in the spin gene are characterized by an extraordinarily strong rejection behavior of female flies in response to male courtship. They are also accompanied by decreases in the viability, adult life span, and oviposition rate of the flies. Inspin mutants, some oocytes and adult neural cells undergo degeneration, which is preceded by reductions in programmed cell death of nurse cells in ovaries and of neurons in the pupal nervous system, respectively. The central nervous system (CNS) of spinmutant flies accumulates autofluorescent lipopigments with characteristics similar to those of lipofuscin. The spinlocus generates at least five different transcripts, with only two of these being able to rescue the spin behavioral phenotype; each encodes a protein with multiple membrane-spanning domains that are expressed in both the surface glial cells in the CNS and the follicle cells in the ovaries. Orthologs of the spin gene have also been identified in a number of species from nematodes to humans. Analysis of the spin mutant will give us new insights into neurodegenerative diseases and aging.


2010 ◽  
Vol 190 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Ioannis P. Nezis ◽  
Bhupendra V. Shravage ◽  
Antonia P. Sagona ◽  
Trond Lamark ◽  
Geir Bjørkøy ◽  
...  

Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Loredana Amigoni ◽  
Enzo Martegani ◽  
Sonia Colombo

We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in thehxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis inS. cerevisiae. In particular, cells lackingHXK2and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion ofHXK2causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.


2006 ◽  
Vol 48 (7) ◽  
pp. 419-428 ◽  
Author(s):  
Vicky E. Mpakou ◽  
Ioannis P. Nezis ◽  
Dimitrios J. Stravopodis ◽  
Lukas H. Margaritis ◽  
Issidora S. Papassideri

2018 ◽  
Vol 45 (2) ◽  
pp. 1 ◽  
Author(s):  
Vadim Demidchik ◽  
Frans Maathuis ◽  
Olga Voitsekhovskaja

Plant signalling is a set of phenomena that serves the transduction of external and internal signals into physiological responses such as modification of enzyme activity, cytoskeleton structure or gene expression. It operates at the level of cell compartments, whole cells, tissues, organs or even plant communities. To achieve this, plants have evolved a network of signalling proteins including plasma membrane receptors and ion transporters, cascades of kinases and other enzymes as well as several second messengers such as cytosolic calcium (Ca2+), reactive oxygen/nitrogen species (ROS/RNS), cyclic nucleotides (cAMP and cGMP) and others. Overall, these systems recognise and decode environmental signals and co-ordinate ontogeny programs. This paper summarises recent progress in the field of plant signalling, which was a major theme of the 4th International Symposium on Plant Signalling and Behaviour, 2016, in Saint Petersburg, Russia. Several novel hypotheses and concepts were proposed during this meeting. First, the concept of ROS-Ca2+ hubs has found further evidence and acceptance. This concept is based on reciprocal activation of NADPH oxidases by cytosolic Ca2+ on the one hand, and Ca2+-permeable channels that are activated by NADPH-produced ROS. ROS-Ca2+ hubs enhance the intensity and duration of originally weak Ca2+ and ROS signals. Hubs are directly involved in ROS- and Ca2+-mediated physiological reactions, such as stress response, growth, programmed cell death, autophagy and long-distance signalling. Second, recent findings have widened the list of cyclic nucleotide-regulated processes and strengthened the biochemical basis of cyclic nucleotide biochemistry by exploring cyclase activities of new receptors such as the Phytosulfokine Receptor 1, the pathogen peptide 1 receptor (atPepR1), the brassinosteroid BRI1 receptor and the cell wall-associated kinase like 10. cGMP and cAMP signalling has demonstrated strong link to Ca2+ signalling, via cyclic nucleotide-gated Ca2+-permeable ion channels (CNGCs), and to ROS and RNS via their nitrosylated forms. Third, a novel role for cytosolic K+ as a regulator of plant autophagy and programmed cell death has emerged. The cell death-associated proteases and endonucleases were demonstrated to be activated by a decrease of cytosolic K+ via ROS-induced stimulation of the plasma membrane K+ efflux channel GORK. Importantly, the origin of ROS for induction of autophagy and cell death varies in different tissues and comprises several pools, including NADPH oxidases, peroxidases, photosynthetic and respiratory electron-transporting chains and peroxisomal enzymes. The peroxisome pool is the ‘latest’ addition to established cellular ROS-producing machineries and is dependent on the state and abundance of catalase in this compartment. Finally, new aspects of phytohormone signalling, such as regulation of root hydraulic pressure by abscisic acid and rate of mitosis by cytokinins, as well as localising cytokinin receptors in endoplasmic reticulum, are reported. Other observations suggest that melatonin is a hormone-like substance in plants, because it targets Ca2+, ROS and RNS.


Author(s):  
Vaisaly R Nath ◽  
Shirish Mishra ◽  
Bishal Basak ◽  
Deepti Trivedi ◽  
Padinjat Raghu

SummaryInter-organelle communication between closely apposed membranes is proposed at Membrane Contact Sites (MCS). However the regulation of MCS structure and their functional relevance in vivo remain debated. The extended synaptotagmins (Esyt) are evolutionarily conserved proteins proposed to function at MCS. However, loss of all three Esyts in yeast or mammals shows minimal phenotypes questioning the functional importance of Esyt. We report that in Drosophila photoreceptors, MCS number is regulated by PLCβ activity. Photoreceptors of a null allele of Drosophila extended synaptotagmin (dEsyt) show loss of ER-PM MCS. Loss of dEsyt results in mislocalization of RDGB, an MCS localized lipid transfer protein, required for photoreceptor structure and function, ultimately leading to retinal degeneration. dEsyt depletion enhanced the retinal degeneration, reduced light responses and slower rates of plasma membrane PIP2 resynthesis seen in rdgB mutants. Thus, dEsyt function and PLCβ signaling regulate ER-PM MCS structure and lipid transfer in Drosophila photoreceptors.


Sign in / Sign up

Export Citation Format

Share Document