scholarly journals Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev194761 ◽  
Author(s):  
Milica Bulajić ◽  
Divyanshi Srivastava ◽  
Jeremy S. Dasen ◽  
Hynek Wichterle ◽  
Shaun Mahony ◽  
...  

ABSTRACTAlthough Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated ‘The people behind the papers’ interview.

Author(s):  
Milica Bulajić ◽  
Divyanshi Srivastava ◽  
Jeremy S Dasen ◽  
Hynek Wichterle ◽  
Shaun Mahony ◽  
...  

ABSTRACTWhile Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central, and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aim to address how similar HOX TFs diverge to induce different positional identities. We studied HOX TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We find diversity in the genomic binding profiles of different HOX TFs, even among the posterior group paralogs that share similar DNA binding domains. These differences in genomic binding are explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 has a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior HOX TFs to bind to previously inaccessible chromatin drive patterning diversification.


2005 ◽  
Vol 79 (13) ◽  
pp. 8661-8664 ◽  
Author(s):  
Stephen Schuck ◽  
Arne Stenlund

ABSTRACT Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.


1993 ◽  
Vol 13 (2) ◽  
pp. 852-860
Author(s):  
M B Toledano ◽  
D Ghosh ◽  
F Trinh ◽  
W J Leonard

We previously reported that either oxidation or alkylation of NF-kappa B in vitro abrogates DNA binding. We used this phenomenon to help elucidate structural determinants of NF-kappa B binding. We now demonstrate that Cys-62 of NF-kappa B p50 mediates the redox effect and lies within an N-terminal region required for DNA binding but not for dimerization. Several point mutations in this region confer a transdominant negative binding phenotype to p50. The region is highly conserved in all Rel family proteins, and we have determined that it is also critical for DNA binding of NF-kappa B p65. Replacement of the N-terminal region of p65 with the corresponding region from p50 changes its DNA-binding specificity towards that of p50. These data suggest that the N-terminal regions of p50 and p65 are critical for DNA binding and help determine the DNA-binding specificities of p50 and p65. We have defined within the N-terminal region a sequence motif, R(F/G)(R/K)YXCE, which is present in Rel family proteins and also in zinc finger proteins capable of binding to kappa B sites. The potential significance of this finding is discussed.


1992 ◽  
Vol 12 (7) ◽  
pp. 3006-3014 ◽  
Author(s):  
E A Golemis ◽  
R Brent

Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions.


1987 ◽  
Vol 7 (12) ◽  
pp. 4582-4584 ◽  
Author(s):  
L Dailey ◽  
S B Roberts ◽  
N Heintz

Specific DNA-binding and in vitro transcription activities of H4TF-1 and H4TF-2 are inactivated by chelating agents. Binding activity is restored by addition of Zn2+, and H4TF-2 is also reactivated by Fe2+. In contrast, preformed factor-DNA complexes are resistant to chelators. Therefore, metal ions are a required component of the H4TF-1 and H4TF-2 DNA-binding domains.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2639-2650 ◽  
Author(s):  
S. Jun ◽  
C. Desplan

The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs, the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.


2004 ◽  
Vol 186 (11) ◽  
pp. 3499-3507 ◽  
Author(s):  
Hao Xu ◽  
Baohua Gu ◽  
B. Tracy Nixon ◽  
Timothy R. Hoover

ABSTRACT Activators of σ54-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open complex between the promoter and RNA polymerase. These activators are modular, consisting of an N-terminal regulatory domain, a C-terminal DNA-binding domain, and a central activation domain belonging to the AAA+ superfamily of ATPases. The AAA+ domain of Sinorhizobium meliloti C4-dicarboxylic acid transport protein D (DctD) is sufficient to activate transcription. Deletion analysis of the 3′ end of dctD identified the minimal functional C-terminal boundary of the AAA+ domain of DctD as being located between Gly-381 and Ala-384. Histidine-tagged versions of the DctD AAA+ domain were purified and characterized. The DctD AAA+ domain was significantly more soluble than DctD( Δ 1-142), a truncated DctD protein consisting of the AAA+ and DNA-binding domains. In addition, the DctD AAA+ domain was more homogeneous than DctD( Δ 1-142) when analyzed by native gel electrophoresis, migrating predominantly as a single high-molecular-weight species, while DctD( Δ 1-142) displayed multiple species. The DctD AAA+ domain, but not DctD( Δ 1-142), formed a stable complex with σ54 in the presence of the ATP transition state analogue ADP-aluminum fluoride. The DctD AAA+ domain activated transcription in vitro, but many of the transcripts appeared to terminate prematurely, suggesting that the DctD AAA+ domain interfered with transcription elongation. Thus, the DNA-binding domain of DctD appears to have roles in controlling the oligomerization of the AAA+ domain and modulating interactions with σ54 in addition to its role in recognition of upstream activation sequences.


2000 ◽  
Vol 74 (23) ◽  
pp. 10965-10974 ◽  
Author(s):  
Ling Li ◽  
Kristine Yoder ◽  
Mark S. T. Hansen ◽  
Jennifer Olvera ◽  
Michael D. Miller ◽  
...  

ABSTRACT To replicate, a retrovirus must synthesize a cDNA copy of the viral RNA genome and integrate that cDNA into a chromosome of the host. We have investigated the role of a host cell cofactor, HMG I(Y) protein, in integration of human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) cDNA. Previously we reported that HMG I(Y) cofractionates with HIV-1 preintegration complexes (PICs) isolated from freshly infected cells. PICs depleted of required components by treatment with high concentrations of salt could be reconstituted by addition of purified HMG I(Y) in vitro. Here we report studies using immunoprecipitation that indicate that HMG I(Y) is associated with MoMLV preintegration complexes. In mechanistic studies, we show for both HIV-1 and MoMLV that each HMG I(Y) monomer must contain multiple DNA binding domains to stimulate integration by HMG I(Y)-depleted PICs. We also find that HMG I(Y) can condense model HIV-1 or MoMLV cDNA in vitro as measured by stimulation of intermolecular ligation. This reaction, like reconstitution of integration, depends on the presence of multiple DNA binding domains in each HMG I(Y) monomer. These data suggest that binding of multivalent HMG I(Y) monomers to multiple cDNA sites compacts retroviral cDNA, thereby promoting formation of active integrase-cDNA complexes.


2002 ◽  
Vol 22 (1) ◽  
pp. 357-369 ◽  
Author(s):  
Lan Ko ◽  
Guemalli R. Cardona ◽  
Alexandra Henrion-Caude ◽  
William W. Chin

ABSTRACT Gene activation mediated by nuclear receptors is regulated in a tissue-specific manner and requires interactions between nuclear receptors and their cofactors. Here, we identified and characterized a tissue-specific coactivator, GT198, that interacts with the DNA-binding domains of nuclear receptors. GT198 was originally described as a genomic transcript that mapped to the human breast cancer susceptibility locus 17q12-q21 with unknown function. We show that GT198 exhibits a tissue-specific expression pattern in which its mRNA is elevated in testis, spleen, thymus, pituitary cells, and several cancer cell lines. GT198 is a 217-amino-acid nuclear protein that contains a leucine zipper required for its dimerization. In vitro binding and yeast two-hybrid assays indicated that GT198 interacted with nuclear receptors through their DNA-binding domains. GT198 potently stimulated transcription mediated by estrogen receptor α and β, thyroid hormone receptor β1, androgen receptor, glucocorticoid receptor, and progesterone receptor. However, the action of GT198 was distinguishable from that of the ligand-binding domain-interacting nuclear receptor coactivators, such as TRBP, CBP, and SRC-1, with respect to basal activation and hormone sensitivity. Furthermore, protein kinase A, protein kinase C, and mitogen-activated protein kinase can phosphorylate GT198 in vitro, and cotransfection of these kinases regulated the transcriptional activity of GT198. These data suggest that GT198 is a tissue-specific, kinase-regulated nuclear receptor coactivator that interacts with the DNA-binding domains of nuclear receptors.


Sign in / Sign up

Export Citation Format

Share Document