scholarly journals Identification and Characterization of a Tissue-Specific Coactivator, GT198, That Interacts with the DNA-Binding Domains of Nuclear Receptors

2002 ◽  
Vol 22 (1) ◽  
pp. 357-369 ◽  
Author(s):  
Lan Ko ◽  
Guemalli R. Cardona ◽  
Alexandra Henrion-Caude ◽  
William W. Chin

ABSTRACT Gene activation mediated by nuclear receptors is regulated in a tissue-specific manner and requires interactions between nuclear receptors and their cofactors. Here, we identified and characterized a tissue-specific coactivator, GT198, that interacts with the DNA-binding domains of nuclear receptors. GT198 was originally described as a genomic transcript that mapped to the human breast cancer susceptibility locus 17q12-q21 with unknown function. We show that GT198 exhibits a tissue-specific expression pattern in which its mRNA is elevated in testis, spleen, thymus, pituitary cells, and several cancer cell lines. GT198 is a 217-amino-acid nuclear protein that contains a leucine zipper required for its dimerization. In vitro binding and yeast two-hybrid assays indicated that GT198 interacted with nuclear receptors through their DNA-binding domains. GT198 potently stimulated transcription mediated by estrogen receptor α and β, thyroid hormone receptor β1, androgen receptor, glucocorticoid receptor, and progesterone receptor. However, the action of GT198 was distinguishable from that of the ligand-binding domain-interacting nuclear receptor coactivators, such as TRBP, CBP, and SRC-1, with respect to basal activation and hormone sensitivity. Furthermore, protein kinase A, protein kinase C, and mitogen-activated protein kinase can phosphorylate GT198 in vitro, and cotransfection of these kinases regulated the transcriptional activity of GT198. These data suggest that GT198 is a tissue-specific, kinase-regulated nuclear receptor coactivator that interacts with the DNA-binding domains of nuclear receptors.

2003 ◽  
Vol 278 (25) ◽  
pp. 22586-22595 ◽  
Author(s):  
Alpana Ray ◽  
Papiya Ray ◽  
Nicole Guthrie ◽  
Arvind Shakya ◽  
Deepak Kumar ◽  
...  

2005 ◽  
Vol 79 (13) ◽  
pp. 8661-8664 ◽  
Author(s):  
Stephen Schuck ◽  
Arne Stenlund

ABSTRACT Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.


1993 ◽  
Vol 13 (2) ◽  
pp. 852-860
Author(s):  
M B Toledano ◽  
D Ghosh ◽  
F Trinh ◽  
W J Leonard

We previously reported that either oxidation or alkylation of NF-kappa B in vitro abrogates DNA binding. We used this phenomenon to help elucidate structural determinants of NF-kappa B binding. We now demonstrate that Cys-62 of NF-kappa B p50 mediates the redox effect and lies within an N-terminal region required for DNA binding but not for dimerization. Several point mutations in this region confer a transdominant negative binding phenotype to p50. The region is highly conserved in all Rel family proteins, and we have determined that it is also critical for DNA binding of NF-kappa B p65. Replacement of the N-terminal region of p65 with the corresponding region from p50 changes its DNA-binding specificity towards that of p50. These data suggest that the N-terminal regions of p50 and p65 are critical for DNA binding and help determine the DNA-binding specificities of p50 and p65. We have defined within the N-terminal region a sequence motif, R(F/G)(R/K)YXCE, which is present in Rel family proteins and also in zinc finger proteins capable of binding to kappa B sites. The potential significance of this finding is discussed.


1994 ◽  
Vol 14 (10) ◽  
pp. 7025-7035 ◽  
Author(s):  
R Apfel ◽  
D Benbrook ◽  
E Lernhardt ◽  
M A Ortiz ◽  
G Salbert ◽  
...  

The steroid/hormone nuclear receptor superfamily comprises several subfamilies of receptors that interact with overlapping DNA sequences and/or related ligands. The thyroid/retinoid hormone receptor subfamily has recently attracted much interest because of the complex network of its receptor interactions. The retinoid X receptors (RXRs), for instance, play a very central role in this subfamily, forming heterodimers with several receptors. Here we describe a novel member of this subfamily that interacts with RXR. Using a v-erbA probe, we obtained a cDNA which encodes a novel 445-amino-acid protein, RLD-1, that contains the characteristic domains of nuclear receptors. Northern (RNA) blot analysis showed that in mature rats, the receptor is highly expressed in spleen, pituitary, lung, liver, and fat. In addition, weaker expression is observed in several other tissues. Amino acid sequence alignment and DNA-binding data revealed that the DNA-binding domain of the new receptor is related to that of the thyroid/retinoid subgroup of nuclear receptors. RLD-1 preferentially binds as a heterodimer with RXR to a direct repeat of the half-site sequence 5'-G/AGGTCA-3', separated by four nucleotides (DR-4). Surprisingly, this binding is dependent to a high degree on the nature of the spacing nucleotides. None of the known nuclear receptor ligands activated RLD-1. In contrast, a DR-4-dependent constitutive transcriptional activation of a chloramphenicol acetyltransferase reporter gene by the RLD-1/RXR alpha heterodimer was observed. Our data suggest a highly specific role for this novel receptor within the network of gene regulation by the thyroid/retinoid receptor subfamily.


1992 ◽  
Vol 12 (7) ◽  
pp. 3006-3014 ◽  
Author(s):  
E A Golemis ◽  
R Brent

Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions.


1987 ◽  
Vol 7 (12) ◽  
pp. 4582-4584 ◽  
Author(s):  
L Dailey ◽  
S B Roberts ◽  
N Heintz

Specific DNA-binding and in vitro transcription activities of H4TF-1 and H4TF-2 are inactivated by chelating agents. Binding activity is restored by addition of Zn2+, and H4TF-2 is also reactivated by Fe2+. In contrast, preformed factor-DNA complexes are resistant to chelators. Therefore, metal ions are a required component of the H4TF-1 and H4TF-2 DNA-binding domains.


2000 ◽  
Vol 20 (8) ◽  
pp. 2718-2726 ◽  
Author(s):  
Christophe Rachez ◽  
Matthew Gamble ◽  
Chao-Pei Betty Chang ◽  
G. Brandon Atkins ◽  
Mitchell A. Lazar ◽  
...  

ABSTRACT Transcriptional activation requires both access to DNA assembled as chromatin and functional contact with components of the basal transcription machinery. Using the hormone-bound vitamin D3receptor (VDR) ligand binding domain (LBD) as an affinity matrix, we previously identified a novel multisubunit coactivator complex, DRIP (VDR-interacting proteins), required for transcriptional activation by nuclear receptors and several other transcription factors. In this report, we characterize the nuclear receptor binding features of DRIP205, a key subunit of the DRIP complex, that interacts directly with VDR and thyroid hormone receptor in response to ligand and anchors the other DRIP subunits to the nuclear receptor LBD. In common with other nuclear receptor coactivators, DRIP205 interaction occurs through one of two LXXLL motifs and requires the receptor's AF-2 subdomain. Although the second motif of DRIP205 is required only for VDR binding in vitro, both motifs are used in the context of an retinoid X receptor-VDR heterodimer on DNA and in transactivation in vivo. We demonstrate that both endogenous p160 coactivators and DRIP complexes bind to the VDR LBD from nuclear extracts through similar sequence requirements, but they do so as distinct complexes. Moreover, in contrast to the p160 family of coactivators, the DRIP complex is devoid of any histone acetyltransferase activity. The results demonstrate that different coactivator complexes with distinct functions bind to the same transactivation region of nuclear receptors, suggesting that they are both required for transcription activation by nuclear receptors.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2639-2650 ◽  
Author(s):  
S. Jun ◽  
C. Desplan

The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs, the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.


Sign in / Sign up

Export Citation Format

Share Document