The Morphogenetic Influence of Innervation on the Ontogenetic Development of Muscle-spindles

Development ◽  
1957 ◽  
Vol 5 (3) ◽  
pp. 283-292
Author(s):  
J. Zelená

The influence of innervation on the differentiation of peripheral structures during ontogenesis has been studied mainly in skeletal muscle. It has been shown in a number of experimental studies on amphibians that the morphological differentiation of the whole extremity as well as its muscular tissue takes place normally after removal of the medullary plate at the gastrula or neurula stage, although the limb developing without innervation is smaller and its musculature is atrophic (Harrison, 1903, 1904; Hooker, 1911; Hamburger, 1928). In the chick transplantation of the limb-bud into the coelom cavity or on to the chorioallantois leads in the first phase to muscular differentiation despite the fact that the limb is not innervated (Hunt, 1932; Hamburger & Waugh, 1940; Eastlick, 1943; Eastlick & Wortham, 1947). Degeneration and sarcolysis follow the initial differentiation at a very early stage.

2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


2017 ◽  
Vol 312 (5) ◽  
pp. E394-E406 ◽  
Author(s):  
Samuel Lee ◽  
Teresa C. Leone ◽  
Lisa Rogosa ◽  
John Rumsey ◽  
Julio Ayala ◽  
...  

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy.


In a previous communication (Strangeways and Fell, 1926) it was shown that if the undifferentiated limb-bud of the embryonic Fowl was cultivated in vitro , it underwent a considerable amount of progressive development. This capacity for independent development in vitro possessed by an isolated organ has been further investigated, and for these later experiments the writers have employed the early embryonic eye, a structure endowed with more complex potentialities than the limb-bud. As a result of these experiments it was found that the eyes of young Fowl embryos possess, in a remarkable degree, the faculty for self-differentiation in vitro and for “organotypic” growth as defined by Maximow (1925). The previous work on organotypic growth in vitro has already been briefly outlined in the writers’ earlier paper and need not be discussed here. The expenses connected with the experiments described in this communication were met by the Medical Research Council, to whom the writers desire to express their thanks.


1993 ◽  
Vol 67 (4) ◽  
pp. 640-654 ◽  
Author(s):  
Hubert Szaniawski ◽  
Stefan Bengtson

Primitive euconodont elements from the Upper Cambrian of Sweden are investigated histologically and compared with co-occurring elements of paraconodonts. The proposed close relationship between the two groups is confirmed. Typical euconodont and paraconodont elements are bridged by intermediate forms. The ontogenetic development of the early euconodont elements shows striking similarities to the evolutionary development from paraconodonts to euconodonts, suggesting that evolution generally followed a peramorphic pattern (“recapitulation”). The conodont crown originated through extension of the growth lamellae around the whole element, accompanied by stronger mineralization. The first denticulation in Proconodontus arose when a jagged posterior edge in juvenile specimens was enhanced by the subsequent deposition of growth lamellae, a process comparable to the regeneration of broken tips. The most primitive euconodont elements probably erupted from the epithelium earlier in ontogeny than in more advanced forms. After the appearance of the phosphatic crown, conodont elements underwent a very rapid morphological differentiation. Cordylodus may have arisen from Proconodontus serratus.


2016 ◽  
Vol 67 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Marija Kurinčič ◽  
Barbara Jeršek ◽  
Anja Klančnik ◽  
Sonja Smole Možina ◽  
Rok Fink ◽  
...  

Abstract Interactions between bacterial cells and contact materials play an important role in food safety and technology. As bacterial strains become ever more resistant to antibiotics, the aim of this study was to analyse adhesion of selected foodborne bacterial strains on polystyrene surface and to evaluate the effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential as strategies of adhesion prevention. The results showed strain-specific adhesion rate on polystyrene. The lowest and the highest adhesion were found for two B. cereus lines. Natural antimicrobials ferulic and rosmarinic acid substantially decreased adhesion, whereas the effect of epigallocatechin gallate was neglectful. Similar results were found for the zeta potential, indicating that natural antimicrobials reduce bacterial adhesion. Targeting bacterial adhesion using natural extracts we can eliminate potential infection at an early stage. Future experimental studies should focus on situations that are as close to industrial conditions as possible.


Nutrients ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 935 ◽  
Author(s):  
Bernhard Franzke ◽  
Oliver Neubauer ◽  
David Cameron-Smith ◽  
Karl-Heinz Wagner

There is an ongoing debate as to the optimal protein intake in older adults. An increasing body of experimental studies on skeletal muscle protein metabolism as well as epidemiological data suggest that protein requirements with ageing might be greater than many current dietary recommendations. Importantly, none of the intervention studies in this context specifically investigated very old individuals. Data on the fastest growing age group of the oldest old (aged 85 years and older) is very limited. In this review, we examine the current evidence on protein intake for preserving muscle mass, strength and function in older individuals, with emphasis on data in the very old. Available observational data suggest beneficial effects of a higher protein intake with physical function in the oldest old. Whilst, studies estimating protein requirements in old and very old individuals based on whole-body measurements, show no differences between these sub-populations of elderly. However, small sample sizes preclude drawing firm conclusions. Experimental studies that compared muscle protein synthetic (MPS) responses to protein ingestion in young and old adults suggest that a higher relative protein intake is required to maximally stimulate skeletal muscle MPS in the aged. Although, data on MPS responses to protein ingestion in the oldest old are currently lacking. Collectively, the data reviewed for this article support the concept that there is a close interaction of physical activity, diet, function and ageing. An attractive hypothesis is that regular physical activity may preserve and even enhance the responsiveness of ageing skeletal muscle to protein intake, until very advanced age. More research involving study participants particularly aged ≥85 years is warranted to better investigate and determine protein requirements in this specific growing population group.


1994 ◽  
Vol 267 (6) ◽  
pp. H2186-H2192 ◽  
Author(s):  
Z. Chati ◽  
F. Zannad ◽  
C. Michel ◽  
B. Lherbier ◽  
P. M. Mertes ◽  
...  

We studied skeletal muscle phosphate metabolism abnormalities to examine their contribution at an early stage of congestive heart failure (CHF) in rats with aortocaval fistula (ACF) 4 wk after the procedure. In a group of 26 rats (13 with ACF and 13 sham operated), we assessed the degree of CHF. The ACF produced a significant rise in heart weight and plasma atrial natriuretic peptide. In a second group of 26 rats (13 ACF and 13 sham operated), we performed 31P-magnetic resonance spectroscopy in the gastrocnemius muscle during motor activity produced by electrical stimulation. The rate of phosphocreatine depletion, expressed by its initial slope, was higher in the ACF rats compared with controls (0.078 +/- 0.01 vs. 0.041 +/- 0.007; P < 0.03). pH and ATP decreased and phosphodiesters increased in all rats during electrical stimulation, with no difference between ACF rats and controls. The kinetics of phosphocreatine recovery were not different between ACF rats and controls. Together with previous studies, our present results suggest that muscle metabolism abnormalities in CHF may vary according to the experimental model and may be observed early in the course of the disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Han ◽  
Fuqiang Gao ◽  
Yajia Li ◽  
Jinhui Ma ◽  
Wei Sun ◽  
...  

Background. As a pathological process, osteonecrosis of the femoral head (ONFH) is characterized by the avascularity of the femoral head, cellular necrosis, microfracture, and the collapse of the articular surface. Currently, critical treatment for early-stage ONFH is limited to core decompression. However, the efficacy of core decompression remains controversial. To improve the core decompression efficacy, regenerative techniques such as the use of platelet-rich plasma (PRP) were proposed for early-stage ONFH. As a type of autologous plasma containing concentrations of platelets greater than the baseline, PRP plays an important role in tissue repair, regeneration, and the differentiation of mesenchymal stem cells (MSCs). In this review, we present a comprehensive overview of the operation modes, mechanism, and efficacy of PRP for early-stage ONFH treatment. Methods. We searched for relevant studies in the PubMed, Web of Science, and Embase databases. By searching these electronic databases, the identification of either clinical or experimental studies evaluating PRP, MSC, core decompression, and ONFH was our goal. Results. Seventeen studies of PRP and avascular necrosis of the femoral head were evaluated in our review. Ten studies related to the possible mechanism of PRP for treating ONFH were reviewed. Seven studies of the operation modes of PRP in treating ONFH were identified. We reviewed the efficacy of PRP in treating ONFH systematically and made an attempt to compare the PRP operation modes in 7 studies and other operation modes in past studies for early-stage ONFH treatment. Conclusion. PRP treats ONFH mainly through three mechanisms: inducing angiogenesis and osteogenesis to accelerate bone healing, inhibiting inflammatory reactions in necrotic lesions, and preventing apoptosis induced by glucocorticoids. In addition, as an adjunctive therapy for core decompression, the use of PRP is recommended to improve the treatment of early-stage ONFH patients, especially when combined with stem cells and bone grafts, by inducing osteogenic activity and stimulating the differentiation of stem cells in necrotic lesions.


2009 ◽  
Vol 58 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Lisa J. Kirkpatrick ◽  
Zipora Yablonka-Reuveni ◽  
Benjamin W.C. Rosser

Intrafusal fibers within muscle spindles retain features characteristic of immaturity, unlike the larger and more numerous extrafusal fibers constituting the bulk of skeletal muscle. Satellite cells (SCs), myogenic progenitors, are detected on the surfaces of both intrafusal and extrafusal fibers, but little is known of spindle SCs. We have recently demonstrated that, like their extrafusal counterparts, SCs in muscle spindles of posthatch chickens express paired box transcription factor 7 (Pax7) protein. During vertebrate embryogenesis, myogenic progenitors express both Pax7 and Pax3 proteins. In postnatal mice, Pax3 appears in rare SC subsets, whereas Pax7 is expressed by all SCs within extrafusal fibers. Here we test the hypothesis that Pax3 protein maintains localized expression within SCs of muscle spindles. Immunohistochemical techniques were used to identify SCs by their Pax7 expression within anterior latissimus dorsi muscle excised from posthatch chickens of various ages. A greater percentage of SCs express Pax3 within intrafusal than extrafusal fibers at each age, and the proportion of SCs expressing Pax3 declines with aging. This is the first study to localize Pax3 expression in posthatch avian muscle and within SCs of muscle spindles. We suggest that Pax3-positive SCs are involved in fiber maintenance.


2011 ◽  
Vol 193 (22) ◽  
pp. 6358-6365 ◽  
Author(s):  
Marcin Wolański ◽  
Rafał Donczew ◽  
Agnieszka Kois-Ostrowska ◽  
Paweł Masiewicz ◽  
Dagmara Jakimowicz ◽  
...  

AdpA is a key regulator of morphological differentiation inStreptomyces. In contrast toStreptomyces griseus, relatively little is known about AdpA protein functions inStreptomyces coelicolor. Here, we report for the first time the translation accumulation profile of theS. coelicoloradpA(adpASc) gene; the level ofS. coelicolorAdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpAScspecifically binds theadpAScpromoter regionin vitroandin vivo, suggesting that its expression is autoregulated; surprisingly, in contrast toS. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpAScon the expression of several genes whose products play key roles in the differentiation ofS. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpAScprotein on the expression of the analyzed genes presumably results mainly from different affinities of AdpAScprotein to individual promoters.


Sign in / Sign up

Export Citation Format

Share Document