Postembryonic development of the visual system of Periplaneta americana

Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 235-255
Author(s):  
Robert J. Stark ◽  
Michael I. Mote

The compound eyes of Periplaneta americana are connected by optic fibre tracts to an optic lobe composed of three sequential ganglia, the lamina, the medulla and the lobula respectively. The eyes and optic ganglia are organized into repeating sub-units arranged in a regular pattern. During postembryonic development, the number of subunits in the eye (ommatidia) increases from between 50 and 60 to over 2000, with a concomitant increase in the size of the optic lobe ganglia. The patterns of cell growth and proliferation were examined in serial section autoradiagraphs prepared following long and short exposures to [3H]thymidine during each developmental stage. Aspects of structural differentiation were examined in reduced silver-stained sections of nymphs at each developmental stage. Growth of the eye and optic ganglia resulted from the continuous proliferation of new cells throughout postembryonic development. Unlike other body tissues, growth of this system was independent of the moulting cycle. The pattern of growth observed in the optic ganglia directly reflected the growth of the eye. Growth of the compound eye occurs from a special zone of proliferation and differentiation located along all but its posterior margin. The lamina and medulla both grow by cell proliferation from a single neuroblast region located at the apex of the angle subtended by them. Cells which proliferate distally from this region differentiate into lamina neurons, while those that proliferate proximally differentiate into medulla neurons. Axons growing from these two adjacent regions meet at and add new new fibres to the distal end of the medulla neuropil. Specificity of the interneuronal connexions appears to result from a precise temporospatial sequencing of growth with the formation of the optic ganglia dependent on retinal development.

Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 259-276
Author(s):  
Charles Straznicky ◽  
David Tay

Right compound eyes were formed in Xenopus embryos at stages 32–33 by the fusion of two nasal (NN), two ventral (VV) or two temporal (TT) halves. Shortly after metamorphosis the optic nerve from the compound eye was sectioned and the left intact eye removed. The retinotectal projections from the compound eye to the contralateral and ipsilateral tecta were studied by [3H]proline autoradiography and electrophysiological mapping between 6 weeks and 5 months after the postmetamorphic surgery. The results showed that NN and VV eyes projected to the entire extent of both tecta. In contrast, optic fibre projection from TT eyes, although more extensive than the normal temporal hemiretinal projection, failed to cover the caudomedial portion of the tecta. The visuotectal projections in all three combinations corresponded to typical reduplicated maps to be expected from such compound eyes, where each of the hemiretinae projected across the contralateral and ipsilateral tecta in an overlapping fashion. The rapid expansion of the hemiretinal projections of the compound eyes in the ipsilateral tectum following the removal of the resident optic fibre projection suggests that tectal markers may be carried and deployed by the incoming optic fibres themselves.


1959 ◽  
Vol 14 (4) ◽  
pp. 273-278 ◽  
Author(s):  
Jost Bernhard Walther ◽  
Eberhard Dodt

Behaviour experiments have shown that insects react to ultraviolet light. Almost no data are available within this spectral range, however, on the sensitivity of their light sense organs.In this investigation the relative spectral sensitivity (1/Q) of the compound eye of the fly, Calliphora erythrocephala, and various areas of the compound eye of the cockroach, Periplaneta americana, was measured including the ultraviolet range down to 290 mμ. Equal amplitudes of the electroretinogram indicated equal efficiencies of the stimuli.The sensitivity curve in both species shows, besides the known maximum in the blue green, a second maximum in the ultraviolet. This second maximum was found between 341-369 mμ depending on the species and the particular area of the eye. At still shorter wave lengths sensitivity decreases. In the fly eye and the upper part of the cockroach eye the sensitivity maximum in the ultraviolet is higher than in the bluegreen, whereas in the ventral part of the cockroch eye it is lower. Monochromatic light adaptation selectively influences the relative sensitivity of the upper part of the cockroach eye.The sensitivity curves are discussed with regard to visual pigments and types of receptors. Fluorescence of the eye media is considered to have only negligible if any influence on the high sensitivity for ultraviolet light.


Development ◽  
1984 ◽  
Vol 83 (1) ◽  
pp. 189-211
Author(s):  
D. J. Emery ◽  
K. A. Bell ◽  
W. Chapco ◽  
J. D. Steeves

A reduced-eye (re) mutant grasshopper of Melanoplus sanguinipes has been characterized by small flat compound eyes lacking facets, no lateral ocelli and only a remnant of the median ocellus. The re grasshoppers walk, jump, fly and feed in a normal manner, but do not respond to visual and auditory stimuli, suggesting they may be blind and deaf. Extracellular recordings from the ventral nerve cord of re mutants verified the lack of neural activity in response to visual and auditory inputs, yet the mutants detected mechanical and tactile stimuli. Electroretinograms implied that a visual deficit may be within the photoreceptors of the compound eye. Histological examination of the compound eyes and ocelli indicated that the cells of the mutant compound eye incompletely differentiate. The optic lamina underlying the retina is missing, as is the outer optic chiasma. The medulla and lobula of the mutant optic lobe are present, however, the neuropil of the medulla lacks the characteristic axonal projection patterns of wild-type grasshoppers. The re grasshopper also lacks all ocellar nerves. Ocellar nerves are normally formed from processes of second order ocellar neurons (SONs), suggesting that if the mutant SONs are present within the protocerebrum, their morphology is drastically altered. Comparison of embryos and juvenile nymphs supports the suggestion that the alterations in the re visual system are the result of abnormal differentiation during development. Even though there is clear evidence of morphological alterations in second and third order optic lobe interneurons, one higher order visual interneuron of the midbrain, the descending contralateral movement detector (DCMD), has the same morphology as the DCMD in a wildtype brain. In this instance, the complete deprivation of the primary sensory input does not appear to alter cellular development.


1992 ◽  
Vol 118 (1) ◽  
pp. 163-176 ◽  
Author(s):  
L Wang ◽  
Y Feng ◽  
J L Denburg

mAb DSS-8 binds to a 164-kD developmental stage-specific cell surface antigen in the nervous system of the cockroach, Periplaneta americana. The antigen is localized to different subsets of cells at various stages of development. The spatial and temporal distributions of DSS-8 binding were determined and are consistent with this antigen playing multiple roles in the development of the nervous system. Direct identification of some of these functions was made by perturbation experiments in which pioneer axon growth occurs in embryos that are cultured in vitro in the presence of mAb DSS-8 or its Fab fragment. Under these conditions the pioneer axons of the median fiber tract grow but follow altered pathways. In a smaller percentage of the ganglia, the immunoreagents additionally produce defasciculation of a subset of DSS-8 labeled axons. Therefore, direct roles for the DSS-8 antigen in both the guidance of pioneer axons and selective fasciculation have been demonstrated.


1986 ◽  
Vol 125 (1) ◽  
pp. 57-70
Author(s):  
Makoto Mizunami ◽  
Hideki Tateda

Nine types of ocellar interneurones with arborizations in the ocellar tract have been identified in the cockroach, Periplaneta americana. These neurones are classified into (1) five types of ‘PS-neurone’, which project into the posterior slope, (2) two types of ‘OL-neurone’, which project into the lobula and medulla of the optic lobe, and (3) two types of ‘D-neurone’, which descend to the thoracic ganglia. When recordings were made in the ocellar tract, all types of neurones exhibited similar responses: a tonic hyperpolarization during illumination and one or a few transient depolarizations at the end of illumination. However, these neurones are classified into several physiological types from the responses recorded in their axons or terminal regions.


1973 ◽  
Vol 59 (3) ◽  
pp. 675-696
Author(s):  
R. J. COOTER

1. Visual and multimodal units were recorded from the thoracic nerve cord of the cockroach, Periplaneta americana, using glass microelectrodes. 2. Compound-eye units could be classified as ON-, OFF- or ON-OFF-units according to their response to visual stimulation. Some were multimodal, firing to both visual and tactile stimulation of the antennae. 3. Although some units were found to be either fired by ipsilateral or by contralateral stimulation only, others were fired by both types of stimulation, often in different ways. 4. Ocellar units were invariably OFF-units, mainly phasic, but one type showed tonic dark-firing in addition to the phasic OFF-burst. 5. The general properties of cockroach visual units are discussed and compared with those reported by other workers for different insects.


Sign in / Sign up

Export Citation Format

Share Document