scholarly journals Inhibition of proteolysis in rat yolk sac as a cause of teratogenesis. Effects of leupeptin in vitro and in vivo

Development ◽  
1983 ◽  
Vol 78 (1) ◽  
pp. 183-193
Author(s):  
Stuart J. Freeman ◽  
John B. Lloyd

Conceptuses from 9·5-day pregnant rats were cultured for 48 h in heat-inactivated homologous serum to which leupeptin, a specific inhibitor of the lysosomal cysteine-proteinases, was added for the final or the penultimate 6h. The presence of leupeptin (25 µg/ml or above) increased the protein content of yolk sacs at harvesting to approximately twice the control value. The protein content of the embryo at harvesting was lower than that of controls. When 125I-labelled polyvinylpyrrolidone was added to the culture serum for the final 6 h of culture, radioactivity was found in the yolk sac at harvesting, but not in the embryo. The presence of leupeptin did not affect the rate of uptake of the radiolabelled macromolecule by the yolk sac, nor facilitate its entry into the embryo. When formaldehyde-denatured 125I-labelled bovine serum albumin was added to the culture medium for the final 6 h of culture, little radioactivity was found in the yolk sac at harvesting, and barely any was found in the embryo. Trichloroacetic acid-soluble radioactivity was found in the culture serum. The presence of leupeptin sharply increased the levels of radioactivity in the yolk sac (but not the embryo) and sharply decreased the acid-soluble radioactivity of the culture medium. When rat serum whose proteins were labelled with [3H]leucine was used as culture medium, radioactivity was found in both yolk sac and embryo at harvesting. The presence of leupeptin increased the amount found in the yolk sac and decreased that found in the embryo. These results are interpreted as follows. Leupeptin enters the lysosomes of the yolk sac, inhibiting their cysteine proteinases. The digestion of proteins pinocytosed by the yolk sac is consequently inhibited, resulting in the accumulation of protein by the yolk sac and a decreased flow of amino acids to the embryo. Leupeptin (50 mg/kg), injected into pregnant rats at either 8·5 days or 9·5 days of gestation, induced congenital malformation in the offspring. It is proposed that leupeptin exerts its teratogenic action by inhibiting proteolysis in the lysosomes of the yolk sac, and so depriving the developing embryo of its supply of amino acids at a critical stage of development.

Development ◽  
1972 ◽  
Vol 27 (3) ◽  
pp. 543-553
Author(s):  
D. A. T. New ◽  
R. L. Brent

Rat embryos, explanted with their embryonic membranes during the early stages of organogenesis ( days gestation), were grown in culture in roller tubes. Yolk-sac antibody (sheep anti rat yolk-sac gamma globulin), known to be teratogenic when injected into pregnant rats, was added to the culture medium. At concentrations of 0·1 mg/ml or more the antibody caused gross retardation of growth and differentiation. Injection of antibody into the amniotic cavity so that it had direct contact with the embryo, or between the amnion and yolk sac so that it was in contact with the mesodermal surface of the yolk sac, had little or no effect on development of the embryo or its membranes. These in vitro experiments indicate that yolk-sac antibody has an effect on development independent of any immunological reaction of the mother, and the primary action is probably on the visceral yolk-sac endoderm.


Development ◽  
1973 ◽  
Vol 29 (2) ◽  
pp. 473-483
Author(s):  
D. L. Cockroft

1. As a result of the relatively simple operation of opening the yolk sac and thus exposing the foetal capillary circulation to flowing medium, it has proved possible to grow 12·5- and 13·5-day rat foetuses for a period of 42 h in culture. 2. 25% rat serum, 75% Tyrode has been found to be a satisfactory and economic culture medium, and has the added attraction that foetal survival is improved compared with that obtained in whole rat serum. 3. For both 12·5- and 13·5-day foetuses grown with open yolk sacs, a gas mixture of 95% O2, 5% CO2 in equilibrium at 1 atm with culture medium flowing at about 15 ml/min has been found to give the best results. 4. Under these conditions, foetuses explanted at 12·5 days increased their protein content from 1·0–1·3 mg to 2·3–2·7 mg during culture. Their somite number was 40–44 at explantation and reached 50–55 during culture. 5. Foetuses explanted at 13·5 days increased their protein content from 3·2–4·0 mg to 6·1–7·5 mg during culture. Their somite number was 51–55 at explantation and reached 60–63 during culture.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 223-234
Author(s):  
Stuart J. Freeman ◽  
Felix Beck ◽  
John B. Lloyd

Conceptuses from 9·5-day pregnant rats have been cultured for 48 h in heat-inactivated homologous serum. Embryonic development was normal. The protein contents of embryos and visceral yolk sacs after different periods of culture were recorded. When 125-labelled polyvinylpyrrolidone or [3H]dextran were added to the culture serum, radioactivity was accumulated by the yolk sac, but only background levels were detected in the embryo itself. The amount of radioactivity found in the yolk sac varied with the length of the interval before harvesting during which 125 I-labelled PVP or [3H]dextran was present. When formaldehyde-denatured 125 I-labelled bovine serum albumin was added to the culture serum, little radioactivity accumulated in the yolk sac and only background levels were found in the embryo. Trichloroacetic acid-soluble radioactivity steadily appeared in the culture serum, however. When conceptuses were cultured in glucose- and vitamin-supplemented dialysed serum from rats injected 2 h previously with [3H]leucine, radioactivity was found in both embryos and yolk sacs. The amount of radioactivity in these tissues increased with duration of exposure to 3H-labelled serum proteins. After short exposures little of the yolk sac and embryonic radioactivity was acid-insoluble, but this proportion increased with duration of exposure. These results are interpreted as follows. Intact macromolecules cannot enter the cells of the embryo itself, but are captured by pinocytosis into the cells of the visceral yolk-sac endoderm. Indigestible macromolecules such as 125 I-labelled polyvinylpyrrolidone and [3H]- dextran accumulate within the yolk-sac lysosomes, but proteins are digested there by the lysosomal enzymes. The radiolabelled digestion product of 125 I-labelled bovine albumin is [125 I]iodotyrosine, which cells cannot utilize and so is excreted into the culture serum. The labelled digestion product of the 3H-labelled rat serum proteins is [3H]leucine, which is used for protein synthesis in both embryo and yolk sac. The experiments provide direct evidence for the long-suspected role of the yolk sac in mediating embryonic nutrition in the period of development prior to the establishment of a functional chorioallantoic placenta.


Development ◽  
1983 ◽  
Vol 73 (1) ◽  
pp. 307-315
Author(s):  
Stuart J. Freeman ◽  
John B. Lloyd

[3H]Leucine-labelled haemoglobin was prepared from rat reticulocytes incubated in the presence of [3H]leucine. Conceptuses from 9·5-day pregnant rats were incubated in vitro for 48 h, with [3H]leucinelabelled haemoglobin present for the final 12, 8, 4, 2 or 0·5 hours. Radioactivity accumulated in visceral yolk sac and in embryonic tissue. When exposure to labelled haemoglobin was for only a short period before harvesting, all the radioactivity found in the embryo and most of that found in the visceral yolk sac was trichloroacetic acid-soluble (i.e. associated with free amino acid rather than with protein). After longer exposures the proportion of radioactivity that was acid-soluble decreased to minimum values of about 20 %. SDS-polyacrylamide gel electrophoresis of the protein-associated radioactivity in visceral yolk sac and embryo was performed. After exposure to labelled haemoglobin for 1 h only prior to harvesting, the yolk sac contained a single peak of radioactivity coincident in mobility with haemoglobin. The embryo contained no protein-associated radioactivity. After exposure to labelled haemoglobin for 12 h, many protein bands in both yolk sac and embryo were radiolabelled. Thus a single radiolabelled protein pinocytically captured by the visceral yolk sac can give rise to the presence of many labelled proteins in embryo and visceral yolk sac. These results indicate that the source protein underwent proteolytic digestion and that the amino acids generated were re-utilized for protein synthesis in both embryonic and visceral yolk-sac cells.


Reproduction ◽  
2005 ◽  
Vol 130 (5) ◽  
pp. 655-668 ◽  
Author(s):  
Paul J Booth ◽  
Peter G Humpherson ◽  
Terry J Watson ◽  
Henry J Leese

Preimplantation embryos can consume and produce amino acids in a manner dependent upon the stage of development that may be predictive of subsequent viability. In order to examine these relationships in the pig, patterns of net depletion and appearance of amino acids byin vitroproduced porcine preimplantation embryos were examined. Cumulus oocyte complexes derived from slaughterhouse pre-pubertal pig ovaries were matured for 40 h in defined TCM-199 medium (containing PVA) before being fertilised (Day 0) with frozen-thawed semen in Tris–based medium. After 6 h, presumptive zygotes were denuded and cultured in groups of 20, in NCSU-23 medium modified to contain 0.1 mM glutamine plus a mixture of 19 amino acids (aa) at low concentrations (0.02–0.11 mM) (NCSU-23aa). Groups of 2–20 embryos were removed (dependent on stage) on Day 0 (1 cell), Day 1 (two- and four-cells), Day 4 (compact morulae) and Day 6 (blastocysts) and placed in 4 μl NCSU-23aafor 24 h. After incubation, the embryos were removed and the spent media was analysed by HPLC. The net rate of amino acid depletion or appearance varied according to amino acid (P< 0.001) and, apart from serine and histidine, stage of development (P< 0.014). Glycine, isoleucine, valine, phenylalanine, tryptophan, methionine, asparagine, lysine, glutamate and aspartate consistently appeared, whereas threonine, glutamine and arginine were consistently depleted. Five types of stage-dependent trends could be observed: Type I: amino acids having high rates of net appearance on Day 0 that reached a nadir on Day 1 or 4 but subsequently increased by Day 6 (glycine, glutamate); Type II: those that exhibited lower rates of net appearance on Days 0 and 6 compared with the intermediate Days 1 and 4 (isoleucine, valine, phenylalanine, methionine, arginine); Type III: amino acids which showed a continuous fall in net appearance (asparagine, aspartate); Type IV: those that exhibited a steady fall in net depletion from Day 0 to Day 6 (glutamine, threonine); Type V: those following no discernable trend. Analysis of further embryo types indicated that presumptive polyspermic embryos on Day 0 had increased (P< 0.05) net rates of leucine, isoleucine, valine and glutamate appearance, and reduced (P< 0.05) net rates of threonine and glutamine depletion compared with normally inseminated oocytes. These data suggest that the net rates of depletion and uptake of amino acids by pig embryos vary between a) amino acids, b) the day of embryo development and, c) the type of embryos present at a given stage of development. The results also suggested that the net depletion and appearance rates of amino acids by early pig embryos might be more similar to those of the human than those of the mouse and cow.


1998 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Y. G. Jung ◽  
T. Sakata ◽  
E. S. Lee ◽  
Y. Fukui

The uptake and synthesis of 19 amino acids by fresh or frozen–thawed bovine blastocysts produced by parthenogenesis (PT) or in vitro fertilization (IVF) were compared in the present study. Fresh blastocysts, 180 h after IVF or PT activation, and frozen–thawed blastocysts, 168 h old and cultured for 12 h post-thawing, were cultured in synthetic oviduct fluid medium (SOFM) containing polyvinyl alcohol (PVA) with both essential and non-essential amino acids (EAA and NEAA, respectively) (Medium 1: M1) or SOFM containing PVA with only EAA (Medium 2: M2). In Experiment 1, when fresh or frozen–thawed PT blastocysts were cultured in M1, the uptake of glutamate (in fresh only), aspartate and arginine, and the synthesis of glutamine and alanine were significantly enhanced. In the culture with M2, serine, asparagine, glutamate, glutamine, glycine, arginine and alanine were significantly taken up. It was found that the glutamine concentrations was significantly higher (P < 0.001) in the culture medium drops containing embryos than in the drops without embryos. In Experiment 2, when PT blastocysts were cultured in M1, the uptake of aspartate and synthesis of alanine were greater (P < 0.01) than those by IVF blastocysts. When M2 was used, a significant (P < 0.01) production of serine, asparagine, glutamate, glutamine and alanine, and the uptake of arginine by PT blastocysts were observed. In Experiment 3, when IVF blastocysts were cultured in M1, fresh blastocysts depleted more aspartate and glutamate, and produced more glutamine and alanine than frozen–thawed blastocysts. When cultured in M2, frozen–thawed blastocysts depleted more threonine (P < 0.01) than fresh blastocysts. These results indicate that the uptake and synthesis of amino acids were different in fresh or frozen–thawed bovine blastocysts derived from PT or IVF. These differences in amino acid metabolism may be related to the viability of the blastocysts.


2010 ◽  
Vol 22 (1) ◽  
pp. 231
Author(s):  
J. Block ◽  
L. Bonilla ◽  
P. J. Hansen

The objective of the present study was to determine whether culture of bovine embryos in a proprietary serum-free culture medium, Block-Bonilla-Hansen-7 (BBH-7), could improve development to the blastocyst stage and enhance survival following vitrification. For Exp. 1, embryos were produced in vitro and cultured in BBH-7 or modified synthetic oviductal fluid (mSOF; as in zygote 10:341 except with 10 μL mL-1 of nonessential amino acids, 20 μL mL-1 of essential amino acids, and 1 mg mL-1 of polyvinyl alcohol instead of albumin) in 5% (v/v) oxygen. Grade 1 expanded blastocysts were harvested at Day 7 post-insemination and vitrified using the open-pulled straw method (Vagta et al. 1998 Mol. Reprod. Dev. 51, 53-58). Vitrified embryos were thawed and cultured in vitro in either mSOF or BBH-7 supplemented with 10% fetal bovine serum and 50 μM dithiolthreitol. Re-expansion and hatching rates were recorded at 24, 48, and 72 h post-thaw. There was no effect of culture medium on cleavage rate. The proportion of oocytes that developed to the blastocyst and advanced blastocyst stages (expanded, hatching, and hatched) at Day 7 was higher (P < 0.001) for embryos cultured in BBH-7 than for embryos cultured in mSOF (41.9 ± 2.0 v. 14.7 ± 2.0% and 31.1 ± 1.3 v. 6.4 ± 1.3%, respectively). There was no effect of culture medium on re-expansion rates at 24, 48, and 72 h post-thaw or on hatching rates at 48 or 72 h. However, the proportion of embryos that were hatching or had hatched by 24 h post-thaw was higher (P < 0.001) for BBH-7 than for mSOF (59.0 ± 0.5 v. 26.7 ± 0.5%). For Exp. 2, late lactation and/or repeat breeder, lactating Holstein cows were synchronized for timed embryo transfer using the OvSynch-56 protocol. Embryos were produced in vitro and cultured in BBH-7 in 5% (v/v) oxygen. Vitrified embryos were produced as for Exp. 1. Fresh embryos were grade 1 expanded blastocysts harvested at Day 7 after insemination. A single embryo was transferred at Day 7 after putative ovulation to all cows with a corpus luteum confirmed by ultrasonography. Pregnancy was diagnosed at Day 28-30 of gestation by ultrasonography. There was no difference in the proportion of recipients that became pregnant after receiving either a fresh (7/18 = 39%) or vitrified (10/27 = 37%) embryo cultured in BBH-7. The results of the present study indicate that BBH-7 can be used to increase the proportion of oocytes that develop to the blastocyst stage. Moreover, the results demonstrate that vitrified embryos produced after culture in BBH-7 can achieve pregnancy rates similar to those obtained using fresh embryos. Support: USDA 2006-55203-17390 and Southeast Milk Checkoff Program.


1996 ◽  
Vol 8 (5) ◽  
pp. 835 ◽  
Author(s):  
T Pinyopummintr ◽  
BD Bavister

Effects of amino acids on early bovine embryo development in vitro were examined using a chemically-defined, protein-free culture medium. Bovine embryos produced in vitro were cultured from 18 h to 72 h post insemination in a simple medium containing lactate as the only energy source except for the amino acid treatments. Subsequently, embryos were transferred to TCM-199 supplemented with serum for blastocyst development to substantiate their developmental competence. Treatments were: (1) non-essential amino acids from TCM-199 (NEA); (2) essential amino acids from TCM-199 (EA); (3) NEA+EA; (4) Eagle's minimum essential medium amino acids (MEM AA); (5) 11 amino acids present in HECM-6 (11 AA); and (6) 0.2 mM glutamine (GLN). A higher proportion of embryos (percentage of inseminated ova) cleaved to the > or = 8-cell stage by 72 h post insemination in NEA (56.7%), EA (41.2%), 11 AA (40.3%) and GLN (51.1%) than in either NEA+EA (30.0%) or MEM AA (33.1%). However, after transfer to complex medium, embryos that had developed in EA, as well as those in MEM AA or NEA+EA, produced significantly fewer blastocysts (37.1%, 34.4% and 25.6% respectively) than those in NEA (56.7%), GLN (48.9%) or 11 AA (37.7%). The ability of blastocysts to hatch from their zonae pellucidae was also affected by amino acid treatment during cleavage stages. The present study indicated that the addition of NEA or GLN or 11 AA to a chemically-defined culture medium during the cleavage phase of bovine embryo development increases their subsequent ability to reach the blastocyst stage. These data have implications for understanding the nutritional needs of bovine embryos produced in vitro and for optimizing the composition of culture media to support their development.


2011 ◽  
Vol 71 (3) ◽  
pp. 448-454 ◽  
Author(s):  
Aurélie Ambrosi ◽  
Vijole Dzikaite ◽  
Jeongsook Park ◽  
Linn Strandberg ◽  
Vijay K Kuchroo ◽  
...  

BackgroundCongenital heart block (CHB) may develop in fetuses of women with anti-Ro/La autoantibodies following placental transfer of maternal autoantibodies and disruption of the fetal atrioventricular (AV) conduction system. Animal models of CHB currently rely on immunisation or transfer of anti-Ro/La antibodies purified from mothers of children with CHB, which does not allow precise identification of the disease-inducing antibody specificity.ObjectiveTo determine the ability of different anti-Ro52 monoclonal antibodies to induce cardiac electrophysiological abnormalities in vivo and affect the calcium homoeostasis of cardiomyocytes in vitro.MethodsMonoclonal antibodies recognising different domains of Ro52 were generated and injected into pregnant rats, and ECG was recorded on newborn pups. Cultures of rat neonatal cardiomyocytes were established to assess the effect of the different anti-Ro52 monoclonal antibodies on calcium homoeostasis.ResultsFirst-degree AV block and bradycardia developed after maternal transfer of antibodies specific for amino acids 200–239 of Ro52 (p200), while pups exposed to antibodies targeting N- or C-terminal epitopes of Ro52 did not show any electrocardiogram abnormalities. Addition of an anti-p200 antibody to cultured cardiomyocytes induced calcium dyshomoeostasis in a time- and dose-dependent manner, while addition of other Ro52 antibodies had no effect.ConclusionThese data for the first time show unambiguously that antibodies specific for amino acids 200–239 of Ro52 can induce cardiac conduction defects in the absence of other autoantibodies, and may therefore be the main initiators of cardiac pathology in the pool of anti-Ro52 antibodies in mothers of children with CHB.


Sign in / Sign up

Export Citation Format

Share Document