Normal fates and states of specification of different regions in the axolotl gastrula

Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 247-269
Author(s):  
J. Herman Cleine ◽  
Jonathan M. W. Slack

A fate map was constructed for four regions of the early gastrula of Ambystoma mexicanum using orthotopic grafts from donors labelled with FLDx (fluoresceinated-lysinated-dextran). The region around the animal pole gave rise to epidermis only and did not include prospective neural plate. The dorsal marginal zone contributed to cephalic endoderm and to the whole length of the axial mesoderm (notochord and somites), the lateral marginal zone to lateroventral and somitic mesoderm, and the ventral marginal zone to lateroventral mesoderm. It was found that the dorsal marginal zone contributed relatively more to the anterior regions of the mesodermal mantle and the ventral marginal zone more to its posterior parts. The same regions of the gastrula and also vegetal yolky tissue were cultured as explants and labelled with tritiated mannose. Their glycoprotein synthesis pattern was compared to those of the neurula tissues to which they contribute in vivo. Animal pole explants synthesized large amounts of the epidermis-specific marker epimucin. Dorsal marginal zone explants did not synthesize epimucin but did make amounts of S2 and S6 indicative of mesoderm, as well as the notochord-specific markers S2·2 and S3·2. Lateral marginal zone explants showed the same pattern as the dorsal marginal zone including the two notochord-specific markers, although they do not contribute to notochord in vivo. Ventral marginal zone explants were more variable in their behaviour. Yolky tissue from the vegetal hemisphere of the gastrula or the archenteron floor of the neurula synthesized mainly polydisperse material of high molecular weight rather than discrete glycoproteins. The results indicate that at the early gastrula stage states of specification exist which correspond to the three germ layers, ecto-, meso- and endoderm. The ectodermal specification of animal pole explants is quite robust and cannot easily be changed by variation of the culture conditions. However treatment with a concentrated pellet of vegetalizing factor does induce a change to mesodermal specification, which is clearly detectable in the pattern of glycoprotein synthesis. Similar inductive interactions between different regions of the early embryo are thought to occur during normal development.

Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 141-148 ◽  
Author(s):  
J. M. W. Slack ◽  
B. G. Darlington ◽  
L. L. Gillespie ◽  
S. F. Godsave ◽  
H. V. Isaacs ◽  
...  

In early amphibian development, the mesoderm is formed around the equator of the blastula in response to an inductive signal from the endoderm. A screen of candidate substances showed that a small group of heparin-binding growth factors (HBGFs) were active as mesoderm-inducing agents in vitro. The factors aFGF, bFGF, kFGF and ECDGF all show similar potency and can produce inductions at concentrations above about 100 pM. The product of the murine int-2 gene is also active, but with a lower specific activity. Above the induction threshold there is a progressive increase of muscle formation with dose. Single blastula ectoderm cells can be induced and will differentiate in a defined medium to form mesodermal tissues. All inner blastula cells are competent to respond to the factors but outer cells, bearing oocyte-derived membrane, are not. Inducing activity can be extracted from Xenopus blastulae and binds to heparin like the previously described HBGFs. Antibody neutralization and Western blotting experiments identify this activity as bFGF. The amounts present are small but would be sufficient to evoke inductions in vivo. It is not yet known whether the bFGF is localized to the endoderm, although it is known that inducing activity secreted by endodermal cells can be neutralized by heparin. The competence of ectoderm to respond to HBGFs rises from about the 128-cell stage and falls again by the onset of gastrulation. This change is paralleled by a rise and fall of binding of 125I-aFGF. Chemical cross-linking reveals that this binding is attributable to a receptor of relative molecular mass about 130 × 103. The receptor is present both in the marginal zone, which responds to the signal in vivo, and in the animal pole region, which is not induced in vivo but which will respond to HBGFs in vitro. In the embryo, the induction in the vicinity of the dorsal meridian is much more potent than that around the remainder of the marginal zone circumference. Dorsal inductions contain notochord and will dorsalize ventral mesoderm with which they are later placed in contact. This effect might be due to a local high bFGF concentration or, more likely, to the secretion in the dorsal region of an additional, synergistic factor. It is known that TGF-β-1 and -2 can greatly increase the effect of low doses of bFGF, although it has not yet been demonstrated that they are present in the embryo. Lithium salts have a dorsalizing effect on whole embryos or on explants from the ventral marginal zone, and also show potent synergism when applied together with HBGFs.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 135-146 ◽  
Author(s):  
M. Delarue ◽  
S. Sanchez ◽  
K.E. Johnson ◽  
T. Darribere ◽  
J.C. Boucaut

We have determined the fate of presumptive mesodermal cells in the early Pleurodeles waltl gastrula. We labeled all cells in a gastrula with RLDx cell lineage tracer and superficial cells with 125I and then grafted small pieces of the marginal zone orthotopically into unlabeled host embryos. Labeled progeny were identified in sectioned embryos at the tail bud stage. The use of double-labeled grafts allowed us to study the relative contributions by superficial and deep cells to different derivatives. We found that the presumptive regions are generally distributed according to classical fate maps for urodeles but that the boundaries between presumptive regions are indistinct, due to extensive intermingling between cells at the edges of grafted regions. We have shown that there is a high dorsal to low ventral gradient of mixing between superficial and deep cells.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2225-2234 ◽  
Author(s):  
M. Tada ◽  
M.A. O'Reilly ◽  
J.C. Smith

Analysis of gene function in Xenopus development frequently involves over-expression experiments, in which RNA encoding the protein of interest is microinjected into the early embryo. By taking advantage of the fate map of Xenopus, it is possible to direct expression of the protein to particular regions of the embryo, but it has not been possible to exert control over the timing of expression; the protein is translated immediately after injection. To overcome this problem in our analysis of the role of Brachyury in Xenopus development, we have, like Kolm and Sive (1995; Dev. Biol. 171, 267–272), explored the use of hormone-inducible constructs. Animal pole regions derived from embryos expressing a fusion protein (Xbra-GR) in which the Xbra open reading frame is fused to the ligand-binding domain of the human glucocorticoid receptor develop as atypical epidermis, presumably because Xbra is sequestered by the heat-shock apparatus of the cell. Addition of dexamethasone, which binds to the glucocorticoid receptor and releases Xbra, causes formation of mesoderm. We have used this approach to investigate the competence of animal pole explants to respond to Xbra-GR, and have found that competence persists until late gastrula stages, even though by this time animal caps have lost the ability to respond to mesoderm-inducing factors such as activin and FGF. In a second series of experiments, we demonstrate that Xbra is capable of inducing its own expression, but that this auto-induction requires intercellular signals and FGF signalling. Finally, we suggest that the use of inducible constructs may assist in the search for target genes of Brachyury.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1335-1342 ◽  
Author(s):  
S.Y. Sokol

It is demonstrated here that the ability of injected Xwnt8 RNA to trigger mesoderm formation in Xenopus presumptive ectoderm (animal caps) depends on the time of explantation. Animal caps isolated from Xwnt8 injected embryos at the late blastula/early gastrula stages differentiate mesodermal tissues whereas caps isolated from early blastula do not. This finding suggests that an endogenous signal reaches the animal cap by the late blastula stage and cooperates with Xwnt8 to induce mesoderm. Similarly, late animal caps isolated at st. 10 from lithium-treated embryos, but not those from control embryos, elongate and express muscle-specific actin transcripts. In addition, the data presented suggests that the cooperating signal is distributed homogeneously with respect to the future dorsoventral axis and may require FGF- and activin-dependent signal transduction pathways. These observations support a model in which mesoderm is induced in vivo by a combined action of several different signals.


Development ◽  
1990 ◽  
Vol 108 (4) ◽  
pp. 581-594 ◽  
Author(s):  
C.B. Kimmel ◽  
R.M. Warga ◽  
T.F. Schilling

We have analyzed lineages of cells labeled by intracellular injection of tracer dye during early zebrafish development to learn when cells become allocated to particular fates during development, and how the fate map is organized. The earliest lineage restriction was described previously, and segregates the yolk cell from the blastoderm in the midblastula. After one or two more cell divisions, the lineages of epithelial enveloping layer (EVL) cells become restricted to generate exclusively periderm. Following an additional division in the late blastula, deep layer (DEL) cells generate clones that are restricted to single deep embryonic tissues. The appearance of both the EVL and DEL restrictions could be causally linked to blastoderm morphogenesis during epiboly. A fate map emerges as the DEL cell lineages become restricted in the late blastula. It is similar in organization to that of an amphibian embryo. DEL cells located near the animal pole of the early gastrula give rise to ectodermal fates (including the definitive epidermis). Cells located near the blastoderm margin give rise to mesodermal and endodermal fates. Dorsal cells in the gastrula form dorsal and anterior structures in the embryo, and ventral cells in the gastrula form dorsal, ventral and posterior structures. The exact locations of progenitors of single cell types and of local regions of the embryo cannot be mapped at the stages we examined, because of variable cell rearrangements during gastrulation.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3505-3518 ◽  
Author(s):  
M.A. Vodicka ◽  
J.C. Gerhart

Spemann's Organizer, located in the dorsal marginal zone of the amphibian gastrula, induces and differentiates dorsal axial structures characteristic of this and other vertebrates. To trace the cellular origins of the Xenopus Organizer, we labelled dorsal blastomeres of three of the four tiers (A, B and C) of the 32-cell embryo with green, red and blue fluorescent lineage tracers. A strong vegetalward displacement of labelled clones occurs between the late blastula and early gastrula stages but clones mix only slightly at their borders. The typical early gastrula Organizer is composed of approximately 10% A1 progeny in its animalmost region, 70% B1 progeny in the central region, and 20% C1 progeny in vegetal and deep regions. Variability in the composition of the early gastrula Organizer results from variability in the position of early cleavage planes and in pregastrulation movements. As the Organizer involutes during gastrulation, forming dorsal axial mesoderm, clonal boundaries are greatly dispersed by cell intermixing. Within a clone, deep cells are displaced and intermixed more than superficial cells. Variability in the distribution of progeny in the dorsal axial mesoderm of the late gastrula results mostly from variable intermixing of cells during gastrulation. Experiments to perturb later developmental events by molecular or embryonic manipulations at an early stage must take this variability into account along with the majority distributions of the fate map. Within the early gastrula Organizer, the genes Xbra, goosecoid, noggin and xNR3 are expressed differently in the animal-vegetal and superficial-deep dimensions. In situ hybridization and lineage labelling define distinct regions of the dorsal marginal zone. By the end of gastrulation, dorsal axial mesoderm cells derived from the Organizer have altered their expression of the genes Xbra, goosecoid, noggin and xNR3. At a given stage, a cell's position in the embryo rather than its lineage may be more important in determining which genes it will express.


In early amphibian development the mesoderm is formed around the equator of the blastula in response to inductive signals from the endoderm. At the time of its formation the mesoderm consists of a large ‘ventral type’ zone and a small ‘organizer’ zone. A screen of candidate substances showed that a small group of heparin binding growth factors (HBGFs) were active as mesoderm inducing agents in vitro . The fibroblast growth factors (aFGF and bFGF) and embryonal carcinoma derived growth factor (ECDGF) all show similar potency and can produce ventral inductions at concentrations above about 100 pM. Single blastula ectoderm cells can be induced and will differentiate in a defined medium to form mesodermal tissues and all inner blastula cells are competent to respond to the factors. Inducing activity can be extracted from Xenopus blastulae and can be purified by heparin affinity chromatography. Antibody neutralization and Western blotting experiments identify this activity as bFGF. The amounts present are small but would be sufficient to evoke ventral inductions in vivo. It is not yet known whether the bFGF is localized to the endoderm, although it is known that inducing activity secreted by endodermal cells can be neutralized by heparin. The competence of ectoderm to respond to FGF rises from about the 128-cell-stage and falls again by the onset of gastrulation. This change is paralleled by a rise and fall of binding of 125I-labelled aFGF. Chemical cross-linking reveals that this binding is attributable to a receptor of molecular mass about 130 kilodaltons (kDa). The receptor is present both in the marginal zone, which responds to the signal in vivo, and in the animal pole region, which is not induced in vivo but which will respond to HBGFs in vitro . In intact embryos we believe that the ventral type mesoderm forms the somites, kidney and other intermediate structures as well as the blood islands of the ventral midline. These intermediate structures are induced as a function of distance from the organizer in a process called ‘dorsalization’. Lithium salts have a dorsalizing effect on whole embryos and also on explants from the ventral marginal zone, causing them to form large blocks of muscle. Lithium will also cause large muscle blocks to form when applied to ectoderm explants together with FGF. It is difficult to extend these results directly to mammalian embryos, but we have shown that the products of the murine int-2 gene and of the human k-fgf genes are active as mesoderm inducing factors.


Development ◽  
1989 ◽  
Vol 105 (2) ◽  
pp. 351-363 ◽  
Author(s):  
D.-L. Shi ◽  
T. Darribere ◽  
K.E. Johnson ◽  
J.-C. Boucaut

We have investigated the autonomous migration of marginal cells and their interactions with extracellular matrix (ECM) located on the inner surface of the blastocoel roof in the urodele amphibian, Pleurodeles waltl, using a novel in vitro migration assay. Animal hemispheres containing equatorial cells removed at different cleavage stages and dorsal marginal zone (DMZ) explants of early gastrula stage were cultured either on fibronectin (FN)-coated or ECM-conditioned substrata. In explanted animal hemispheres, dorsal marginal cells showed autonomous migration on FN-coated substratum at the same time as the onset of gastrulation in control embryos. They acquired this capacity at least at the 32-cell stage, whereas lateral and ventral marginal cells acquired it after the 64-cell stage. DMZ outgrowths of early gastrula stage exhibited autonomous spreading on both substrata. In addition, we showed that they spread preferentially toward the animal pole when deposited on substratum conditioned by the dorsal roof of the blastocoel. By culturing dissociated marginal cells on ECM- conditioned substratum, we also found that increased spreading capacity of marginal cells was related to the initiation of their migration. A comparative study of the migration of marginal cells in ultraviolet (u.v.)-irradiated and normal embryos was also made. The results indicate that dorsal marginal cell migration was absent or dramatically reduced by u.v.-irradiation. These results suggest that the differential acquisition in the spreading capacity both in timing and in intensity around the marginal zone was correlated with the sequential involution of mesodermal cells in the course of gastrulation.


Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


Sign in / Sign up

Export Citation Format

Share Document