scholarly journals Comparison of normal and tumorigenic endothelial cells: differences in thrombospondin production and responses to transforming growth factor-beta

1994 ◽  
Vol 107 (1) ◽  
pp. 39-46
Author(s):  
A. RayChaudhury ◽  
W.A. Frazier ◽  
P.A. D'Amore

Cultured endothelial cells constitutively synthesize significant levels of thrombospondin, an extracellular matrix-associated protein with reported anti-anti-angiogenic properties. However, two murine endothelial cell lines, bEND.3 and Py-4-1, which have been immortalized with polyoma T oncogenes and which generate vascular malformations in vivo, produce little or no thrombospondin though bEND.3 (but not Py-4-1) growth is inhibited by the addition of exogenous thrombospondin. In addition, Py-4-1 cells are not growth-inhibited by transforming growth factor-beta, a potent endothelial inhibitor. These results indicate that these two cell lines may be useful tools in understanding the role and mechanism of action of thrombospondin and transforming growth factor-beta in endothelial cell biology. A role for thrombospondin in vascular development is further suggested by the observation of significant differences in the levels of thrombospondin mRNA and protein between capillary and aortic endothelial cells. Transforming growth factor-beta-1 treatment of normal endothelial cells increases steady-state levels of thrombospondin mRNA and protein and results in extensive deposition of thrombospondin into the extracellular matrix. In contrast, transforming growth factor-beta-1 has little effect on thrombospondin levels in the tumorigenic endothelial cell lines. In view of our earlier finding that contact between endothelial cells and mural cells generates activated transforming growth factor-beta-1, and the fact that thrombospondin is present in a fibrillar network around vascular structures in vitro, we speculate that modulation of thrombospondin production and distribution by transforming growth factor-beta may be a physiological process to enjoin stabilization of vessels and cessation of vessel growth.

1990 ◽  
Vol 111 (2) ◽  
pp. 743-755 ◽  
Author(s):  
M S Pepper ◽  
D Belin ◽  
R Montesano ◽  
L Orci ◽  
J D Vassalli

Tightly controlled proteolytic degradation of the extracellular matrix by invading microvascular endothelial cells is believed to be a necessary component of the angiogenic process. We have previously demonstrated the induction of plasminogen activators (PAs) in bovine microvascular endothelial (BME) cells by three agents that induce angiogenesis in vitro: basic FGF (bFGF), PMA, and sodium orthovanadate. Surprisingly, we find that these agents also induce plasminogen activator inhibitor-1 (PAI-1) activity and mRNA in BME cells. We also find that transforming growth factor-beta 1 (TGF-beta 1), which in vitro modulates a number of endothelial cell functions relevant to angiogenesis, also increases both PAI-1 and urokinase-type PA (u-PA) mRNA. Thus, production of both proteases and protease inhibitors is increased by angiogenic agents and TGF-beta 1. However, the kinetics and amplitude of PAI-1 and u-PA mRNA induction by these agents are strikingly different. We have used the ratio of u-PA:PAI-1 mRNA levels as an indicator of proteolytic balance. This ratio is tilted towards enhanced proteolysis in response to bFGF, towards antiproteolysis in response to TGF-beta 1, and is similar to that in untreated cultures when the two agents are added simultaneously. Using an in vitro angiogenesis assay in three-dimensional fibrin gels, we find that TGF-beta 1 inhibits the bFGF-induced formation of tube-like structures, resulting in the formation of solid endothelial cell cords within the superficial parts of the gel. These results suggest that a net positive proteolytic balance is required for capillary lumen formation. A novel perspective is provided on the relationship between extracellular matrix invasion, lumen formation, and net proteolytic balance, thereby reflecting the interplay between angiogenesis-modulating cytokines such as bFGF and TGF-beta 1.


1992 ◽  
Vol 118 (4) ◽  
pp. 901-909 ◽  
Author(s):  
R Flaumenhaft ◽  
M Abe ◽  
P Mignatti ◽  
D B Rifkin

Exposure of bovine aortic or capillary endothelial cells to basic FGF (bFGF) for 1 h resulted in an approximately sixfold increase in plasminogen activator (PA) activity by 18 h that returned nearly to basal levels by 36 h. We hypothesized that the decrease in PA activity following bFGF stimulation was mediated by transforming growth factor beta (TGF-beta) formed from its inactive precursor. Conditioned medium collected from endothelial cells 36 h after a 1-h exposure to bFGF, but not control medium, inhibited basal levels of PA activity when transferred to confluent monolayers of bovine aortic endothelial cells. Antibody to TGF-beta neutralized the inhibitory activity of this conditioned medium, indicating that the medium contained active TGF-beta. Northern blot analysis and quantitation of acid activatable latent TGF-beta in conditioned medium demonstrated that bFGF exposure did not increase the amount of transcription or secretion of latent TGF-beta by the endothelial cells. Both aprotinin, an inhibitor of plasmin, and anti-urokinase type PA IgG blocked the generation of active TGF-beta in cultures exposed to bFGF. These results demonstrated that plasmin generated by uPA activity is required for the activation of latent TGF-beta in endothelial cell cultures treated with bFGF. Activation of TGF-beta by endothelial cells exposed to bFGF appears to limit both the degree and duration of PA stimulation. Thus, in bFGF-stimulated endothelial cell cultures, PA levels are controlled by a negative feedback loop: PA, whose expression is stimulated by bFGF, contributes to the formation of TGF-beta, which in turn opposes the effects of bFGF by limiting PA synthesis and activity. These studies suggest a role for TGF-beta in reversing the invasive stage of angiogenesis and contributing to the formation of quiescent capillaries.


1995 ◽  
Vol 108 (6) ◽  
pp. 2153-2162 ◽  
Author(s):  
J.F. Talts ◽  
A. Weller ◽  
R. Timpl ◽  
M. Ekblom ◽  
P. Ekblom

We have here studied the composition and regulation of stromal extracellular matrix components in an experimental tumor model. Nude mice were inoculated with WCCS-1 cells, a human Wilms' tumor cell line. In the formed tumors the stroma was found to contain mesenchymal extracellular matrix proteins such as tenascin-C, fibulins-1 and 2 and fibronectin, but no nidogen. Nidogen was confined to basement membranes of tumor blood vessels. Since glucocorticoids have been shown to downregulate tenascin-C expression in vitro, we tested whether dexamethasone can influence biosynthesis of extracellular matrix components during tumor formation in vivo. A downregulation of tenascin-C mRNA and an upregulation of fibronectin mRNA expression by dexamethasone was noted. Transforming growth factor-beta 1 mRNA levels were unaffected by the dexamethasone treatment. Glucocorticoids can thus downregulate tenascin-C synthesis although local stimulatory growth factors are present. The competition between a negative and a positive extrinsic factor on synthesis of stromal extracellular matrix components was studied in a fibroblast/preadipocyte cell line. Transforming growth factor-beta 1 stimulated tenascin-C synthesis but did not affect fibronectin or fibulin-2 synthesis. Dexamethasone at high concentrations could completely suppress the effect of transforming growth factor-beta 1 on tenascin-C mRNA expression. Transforming growth factor-beta 1 could in turn overcome the downregulation of tenascin-C mRNA expression caused by a lower concentration of dexamethasone. We therefore suggest that the limited expression of tenascin-C in part is due to a continuous suppression by physiological levels of glucocorticoids, which can be overcome by local stimulatory growth factors when present in sufficient amounts.


1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


2018 ◽  
Vol 243 (7) ◽  
pp. 601-612 ◽  
Author(s):  
Nathan Cho ◽  
Shadi E Razipour ◽  
Megan L McCain

Cardiac fibroblasts and their activated derivatives, myofibroblasts, play a critical role in wound healing after myocardial injury and often contribute to long-term pathological outcomes, such as excessive fibrosis. Thus, defining the microenvironmental factors that regulate the phenotype of cardiac fibroblasts and myofibroblasts could lead to new therapeutic strategies. Both chemical and biomechanical cues have previously been shown to induce myofibroblast differentiation in many organs and species. For example, transforming growth factor beta 1, a cytokine secreted by neutrophils, and rigid extracellular matrix environments have both been shown to promote differentiation. However, the relative contributions of transforming growth factor beta 1 and extracellular matrix rigidity, two hallmark cues in many pathological myocardial microenvironments, to the phenotype of human cardiac fibroblasts are unclear. We hypothesized that transforming growth factor beta 1 and rigid extracellular matrix environments would potentially have a synergistic effect on the differentiation of human cardiac fibroblasts to myofibroblasts. To test this, we seeded primary human adult cardiac fibroblasts onto coverslips coated with polydimethylsiloxane of various elastic moduli, introduced transforming growth factor beta 1, and longitudinally quantified cell phenotype by measuring expression of α-smooth muscle actin, the most robust indicator of myofibroblasts. Our data indicate that, although extracellular matrix rigidity influenced differentiation after one day of transforming growth factor beta 1 treatment, ultimately transforming growth factor beta 1 superseded extracellular matrix rigidity as the primary regulator of myofibroblast differentiation. We also measured expression of POSTN, FAP, and FSP1, proposed secondary indicators of fibroblast/myofibroblast phenotypes. Although these genes partially trended with α-smooth muscle actin expression, they were relatively inconsistent. Finally, we demonstrated that activated myofibroblasts incompletely revert to a fibroblast phenotype after they are re-plated onto new surfaces without transforming growth factor beta 1, suggesting differentiation is partially reversible. Our results provide new insights into how microenvironmental cues affect human cardiac fibroblast differentiation in the context of myocardial pathology, which is important for identifying effective therapeutic targets and dictating supporting cell phenotypes for engineered human cardiac disease models. Impact statement Heart disease is the leading cause of death worldwide. Many forms of heart disease are associated with fibrosis, which increases extracellular matrix (ECM) rigidity and compromises cardiac output. Fibrotic tissue is synthesized primarily by myofibroblasts differentiated from fibroblasts. Thus, defining the cues that regulate myofibroblast differentiation is important for understanding the mechanisms of fibrosis. However, previous studies have focused on non-human cardiac fibroblasts and have not tested combinations of chemical and mechanical cues. We tested the effects of TGF-β1, a cytokine secreted by immune cells after injury, and ECM rigidity on the differentiation of human cardiac fibroblasts to myofibroblasts. Our results indicate that differentiation is initially influenced by ECM rigidity, but is ultimately superseded by TGF-β1. This suggests that targeting TGF-β signaling pathways in cardiac fibroblasts may have therapeutic potential for attenuating fibrosis, even in rigid microenvironments. Additionally, our approach can be leveraged to engineer more precise multi-cellular human cardiac tissue models.


1987 ◽  
Vol 105 (2) ◽  
pp. 957-963 ◽  
Author(s):  
O Saksela ◽  
D Moscatelli ◽  
D B Rifkin

Basic fibroblast growth factor (bFGF), a potent inducer of angiogenesis in vivo, stimulates the production of both urokinase- and tissue-type plasminogen activators (PAs) in cultured bovine capillary endothelial cells. The observed increase in proteolytic activity induced by bFGF was effectively diminished by picogram amounts of transforming growth factor beta (TGF beta), but could not be abolished by increasing the amount of TGF beta. However, the inhibition by TGF beta was greatly enhanced if the cells were pretreated with TGF beta before addition of bFGF. After prolonged incubation of cultures treated simultaneously with bFGF and TGF beta, the inhibitory effect of TGF beta diminished and the stimulatory effect of the added bFGF dominated as assayed by PA levels. TGF beta did not alter the receptor binding of labeled bFGF, nor did a 6-h pretreatment with TGF beta reduce the amount of bFGF bound. The major difference between the effects of bFGF and TGF beta was that while bFGF effectively enhanced PA activity expressed by the cells, TGF beta decreased the amounts of both cell-associated and secreted PA activity by decreasing enzyme production. Both bFGF and TGF beta increased the secretion of the endothelial-type plasminogen activator inhibitor.


2019 ◽  
Vol 15 (66) ◽  
pp. 483
Author(s):  
SurapaneniKrishna Mohan ◽  
Murad Alsawalha ◽  
AbeerMohammed Al-Subaie ◽  
ReemYousuf Al-Jindan ◽  
SrinivasaRao Bolla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document