Cell cycle regulation of the p34cdc2/p33cdk2-activating kinase p40MO15

1994 ◽  
Vol 107 (10) ◽  
pp. 2789-2799 ◽  
Author(s):  
R.Y. Poon ◽  
K. Yamashita ◽  
M. Howell ◽  
M.A. Ershler ◽  
A. Belyavsky ◽  
...  

A key component of Cdc2/Cdk2-activating kinase (CAK) is p40MO15, a protein kinase subunit that phosphorylates the T161/T160 residues of p34cdc2/p33cdk2. The level and activity of p40MO15 were essentially constant during cleavage of fertilised Xenopus eggs and in growing mouse 3T3 cells, but serum starvation of these cells reduced both the level and activity of p40MO15. Although the level and activity of endogenous p40MO15 did not vary in the cell cycle, we found that bacterially expressed p40MO15 was activated more rapidly by M-phase cell extracts than by interphase cell extracts. Bacterially expressed p40MO15 was phosphorylated mainly on serine 170 (a p34cdc2 phosphorylation site) by mitotic cell extracts, but mutation of S170 to alanine did not affect the activation of p40MO15, whereas mutation of T176 (the equivalent site to T161/T160 in p34cdc2/p33cdk2) abolished the activation of P40MO15. These studies suggest that the level and activity of p40MO15 is probably not a major determinant of p34cdc2/p33cdk2 activity in the cell cycle, and that the activation of p40MO15 may require phosphorylation on T176.

2006 ◽  
Vol 399 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Hyung-Seung Jin ◽  
Tae H. Lee

cIAP2 (cellular inhibitor of apoptosis protein 2) is induced by NF-κB (nuclear factor κB) when cells need to respond quickly to different apoptotic stimuli. A recent study using cDNA microarray technology has suggested that cIAP2 transcription is regulated in a cell cycle-dependent manner, although the mechanism for such regulation is unknown. In this study, we confirmed the cell cycle-dependent regulation of cIAP2 expression at both the mRNA and protein levels. Additionally, we found that a bipartite CDE (cell cycle-dependent element)/CHR (cell cycle gene homology region) element in the cIAP2 promoter mediates cIAP2 gene activation in G2/M phase. Cell cycle-dependent G2/M-phase-specific cIAP2 expression is enhanced by NF-κB activation, and selective down-regulation of cIAP2 causes cells blocked in mitosis with nocodazole to become susceptible to apoptosis, indicating that the G2/M-phase-specific expression of cIAP2 contributes to the survival of mitotically arrested cells. Our studies describing the NF-κB-independent G2/M-phase-specific expression of cIAP2 will help in further understanding the molecular basis of cIAP2 over-expression in a variety of human cancers.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 501
Author(s):  
So Hyun Park ◽  
Ji-Young Hong ◽  
Hyen Joo Park ◽  
Sang Kook Lee

Oxypeucedanin (OPD), a furocoumarin compound from Angelica dahurica (Umbelliferae), exhibits potential antiproliferative activities in human cancer cells. However, the underlying molecular mechanisms of OPD as an anticancer agent in human hepatocellular cancer cells have not been fully elucidated. Therefore, the present study investigated the antiproliferative effect of OPD in SK-Hep-1 human hepatoma cells. OPD effectively inhibited the growth of SK-Hep-1 cells. Flow cytometric analysis revealed that OPD was able to induce G2/M phase cell cycle arrest in cells. The G2/M phase cell cycle arrest by OPD was associated with the downregulation of the checkpoint proteins cyclin B1, cyclin E, cdc2, and cdc25c, and the up-regulation of p-chk1 (Ser345) expression. The growth-inhibitory activity of OPD against hepatoma cells was found to be p53-dependent. The p53-expressing cells (SK-Hep-1 and HepG2) were sensitive, but p53-null cells (Hep3B) were insensitive to the antiproliferative activity of OPD. OPD also activated the expression of p53, and thus leading to the induction of MDM2 and p21, which indicates that the antiproliferative activity of OPD is in part correlated with the modulation of p53 in cancer cells. In addition, the combination of OPD with gemcitabine showed synergistic growth-inhibitory activity in SK-Hep-1 cells. These findings suggest that the anti-proliferative activity of OPD may be highly associated with the induction of G2/M phase cell cycle arrest and upregulation of the p53/MDM2/p21 axis in SK-HEP-1 hepatoma cells.


2022 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Palanivel Naveen ◽  
Kaviyarasu Adhigaman ◽  
...  

A progression of new N-(3'-acetyl-8-nitro-2,3-dihydro-1H,3'H-spiro[quinoline-4,2'-[1,3,4]thiadiazol]-5'-yl) acetamide derivatives were synthesized from potent 8-nitro quinoline-thiosemicarbazones. The synthesized compounds were characterized by different spectroscopic studies and single X-ray crystallographic studies. The compounds were...


2021 ◽  
Author(s):  
Yugang Huang ◽  
Dan Li ◽  
Li Wang ◽  
Xiaomin Su ◽  
Xian-bin Tang

Abstract Adrenocortical carcinoma (ACC) is an aggressive and rare malignant tumor and prone to local invasion and metastasis. While, overexpressed Centromere Protein F (CENPF) is closely related to oncogenesis of various neoplasms, including ACC. However, the prognosis and exact biological function of CENPF in ACC remains largely unclear. In present essay, the expression of CENPF in human ACC samples, GEO and TCGA databases depicted that CENPF were overtly hyper-expressed in ACC patients and positively correlated with tumor stage. The aberrant expression of CENPF was significantly correlated with unfavorable overall survival (OS) in ACC patients. Then, the application of gene-set enrichment analysis (GSEA) declared that CENPF was mainly involved in the G2/M-phase mediated cell cycle and p53 signaling pathway. Further, a small RNA interference experiment was conducted to demonstrate that the interaction between CENPF and CDK1 enhanced the G2/M-phase transition of mitosis, cell proliferation and might induce p53 mediated anti-tumor effect in human ACC cell line, SW13 cells. Lastly, two available therapeutic strategies, including immunotherapy and chemotherapy, have been further probed. Immune infiltration analysis highlighted that ACC patients with high CENPF expression harbored significantly different immune cell populations, and high TMB/MSI score. Then, the gene-drug interaction network stated that CENPF inhibitors, such as Cisplatin, Sunitinib, and Etoposide, might serve as potential drugs for the therapy of ACC. Briefly, CENPF and related genes might be served as a novel prognostic biomarker or latent therapeutic target for ACC patients.


2000 ◽  
Vol 20 (8) ◽  
pp. 2794-2802 ◽  
Author(s):  
Neptune Mizrahi ◽  
Claire Moore

ABSTRACT The poly(A) polymerase of the budding yeast Saccharomyces cerevisiae (Pap1) is a 64-kDa protein essential for the maturation of mRNA. We have found that a modified Pap1 of 90 kDa transiently appears in cells after release from α-factor-induced G1 arrest or from a hydroxyurea-induced S-phase arrest. While a small amount of modification occurs in hydroxyurea-arrested cells, fluorescence-activated cell sorting analysis and microscopic examination of bud formation indicate that the majority of modified enzyme is found at late S/G2 and disappears by the time cells have reached M phase. The reduction of the 90-kDa product upon phosphatase treatment indicates that the altered mobility is due to phosphorylation. A preparation containing primarily the phosphorylated Pap1 has no poly(A) addition activity, but this activity is restored by phosphatase treatment. A portion of Pap1 is also polyubiquitinated concurrent with phosphorylation. However, the bulk of the 64-kDa Pap1 is a stable protein with a half-life of 14 h. The timing, nature, and extent of Pap1 modification in comparison to the mitotic phosphorylation of mammalian poly(A) polymerase suggest an intriguing difference in the cell cycle regulation of this enzyme in yeast and mammalian systems.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3327
Author(s):  
Zhixiang Wang

The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.


2005 ◽  
Vol 79 (5) ◽  
pp. 2780-2787 ◽  
Author(s):  
Tomoshige Kino ◽  
Alexander Gragerov ◽  
Antonio Valentin ◽  
Maria Tsopanomihalou ◽  
Galina Ilyina-Gragerova ◽  
...  

ABSTRACT Vpr and selected mutants were used in a Saccharomyces cerevisiae two-hybrid screen to identify cellular interactors. We found Vpr interacted with 14-3-3 proteins, a family regulating a multitude of proteins in the cell. Vpr mutant R80A, which is inactive in cell cycle arrest, did not interact with 14-3-3. 14-3-3 proteins regulate the G2/M transition by inactivating Cdc25C phosphatase via binding to the phosphorylated serine residue at position 216 of Cdc25C. 14-3-3 overexpression in human cells synergized with Vpr in the arrest of cell cycle. Vpr did not arrest efficiently cells not expressing 14-3-3σ. This indicated that a full complement of 14-3-3 proteins is necessary for optimal Vpr function on the cell cycle. Mutational analysis showed that the C-terminal portion of Vpr, known to harbor its cell cycle-arresting activity, bound directly to the C-terminal part of 14-3-3, outside of its phosphopeptide-binding pocket. Vpr expression shifted localization of the mutant Cdc25C S216A to the cytoplasm, indicating that Vpr promotes the association of 14-3-3 and Cdc25C, independently of the presence of serine 216. Immunoprecipitations of cell extracts indicated the presence of triple complexes (Vpr/14-3-3/Cdc25C). These results indicate that Vpr promotes cell cycle arrest at the G2/M phase by facilitating association of 14-3-3 and Cdc25C independently of the latter's phosphorylation status.


2005 ◽  
Vol 25 (13) ◽  
pp. 5725-5737 ◽  
Author(s):  
Kazuhiro Katayama ◽  
Naoya Fujita ◽  
Takashi Tsuruo

ABSTRACT The serine/threonine kinase Akt is known to promote cell growth by regulating the cell cycle in G1 phase through activation of cyclin/Cdk kinases and inactivation of Cdk inhibitors. However, how the G2/M phase is regulated by Akt remains unclear. Here, we show that Akt counteracts the function of WEE1Hu. Inactivation of Akt by chemotherapeutic drugs or the phosphatidylinositide-3-OH kinase inhibitor LY294002 induced G2/M arrest together with the inhibitory phosphorylation of Cdc2. Because the increased Cdc2 phosphorylation was completely suppressed by wee1hu gene silencing, WEE1Hu was associated with G2/M arrest induced by Akt inactivation. Further analyses revealed that Akt directly bound to and phosphorylated WEE1Hu during the S to G2 phase. Serine-642 was identified as an Akt-dependent phosphorylation site. WEE1Hu kinase activity was not affected by serine-642 phosphorylation. We revealed that serine-642 phosphorylation promoted cytoplasmic localization of WEE1Hu. The nuclear-to-cytoplasmic translocation was mediated by phosphorylation-dependent WEE1Hu binding to 14-3-3θ but not 14-3-3β or -σ. These results indicate that Akt promotes G2/M cell cycle progression by inducing phosphorylation-dependent 14-3-3θ binding and cytoplasmic localization of WEE1Hu.


2021 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Adhigaman Kaviyarasu ◽  
Sundarasamy Amsaveni ◽  
...  

Abstract A progression of novel thiadiazoline spiro quinoline derivatives were synthesized from potent thiadiazoline spiro quinoline derivatives . The synthesized compounds portrayed by different spectroscopic studies and single X-ray crystallographic studies. The compounds were assessed for in vitro anticancer properties towards MCF-7 and HeLa cells. The compounds showed superior inhibition action MCF-7 malignant growth cells. Amongst, the compound 4a showed significant inhibition activity, the cell death mechanism was evaluated by fluorescent staining, and flow cytometry, RT-PCR, and western blot analyses. The in vitro anticancer results revealed that the compound 4a induced apoptosis by inhibition of estrogen receptor alpha (ERα) and G2/M phase cell cycle arrest. The binding affinity of the compounds with ERα and pharmacokinetic properties were confirmed by molecular docking studies.


Sign in / Sign up

Export Citation Format

Share Document