scholarly journals A Rab4-like GTPase in Dictyostelium discoideum colocalizes with V-H(+)-ATPases in reticular membranes of the contractile vacuole complex and in lysosomes

1994 ◽  
Vol 107 (10) ◽  
pp. 2801-2812 ◽  
Author(s):  
J. Bush ◽  
K. Nolta ◽  
J. Rodriguez-Paris ◽  
N. Kaufmann ◽  
T. O'Halloran ◽  
...  

In the course of screening a cDNA library for ras-related Dictyostelium discoideum genes, we cloned a 0.7 kb cDNA (rabD) encoding a putative protein that was 70% identical at the amino acid level to human Rab4. Rab4 is a small M(r) GTPase, which belongs to the Ras superfamily and functions to regulate endocytosis in mammalian cells. Southern blot analysis indicated that the rabD cDNA was encoded by a single copy gene while Northern blot analysis revealed that the rabD gene was expressed at relatively constant levels during growth and differentiation. Affinity-purified antibodies were prepared against a RabD fusion protein expressed in bacteria; the antibodies recognized a single 23 kDa polypeptide on western blots of cell extracts. Density gradient fractionation revealed that the RabD antigen co-distributed primarily with buoyant membranes rich in vacuolar protons pumps (V-H(+)-ATPases) and, to a lesser extent, with lysosomes. This result was confirmed by examining cell lines expressing an epitope-tagged version of RabD. Magnetically purified early endocytic vesicles and post-lysosomal vacuoles reacted more weakly with anti-RabD antibodies than did lysosomes. Other organelles were negative for RabD. Double-label indirect immunofluorescence microscopy revealed that RabD and the 100 kDa V-H(+)-ATPase subunit colocalized in a fine reticular network throughout the cytoplasm. This network was reminiscent of spongiomes, the tubular elements of the contractile vacuole system. Immunoelectron microscopy confirmed the presence of RabD in lysosome fractions and in the membranes rich in V-H(+)-ATPase. We conclude that a Rab4-like GTPase in D. discoideum is principally associated with the spongiomes of contractile vacuole complex.

2000 ◽  
Vol 17 (6) ◽  
pp. 847-854 ◽  
Author(s):  
JAMES C. RYAN ◽  
SERGEY ZNOIKO ◽  
LIN XU ◽  
ROSALIE K. CROUCH ◽  
JIAN-XING MA

The mammalian retina is known to contain two distinct transducins that interact with their respective rod and cone pigments. However, there are no reports of a nonmammalian species having two distinct transducins. In the present study, we report the cloning and cellular localization of two transducin α subunits (Gαt) from the tiger salamander. Through degenerate polymerase chain reaction (PCR) and subsequent screening of a salamander retina cDNA library, we have identified two forms of Gαt. When compared to existing sequences in GenBank, the cloned subunits showed high similarity to rod and cone transducins. The salamander Gαt-1 has 91.2–93.7% amino acid sequence identity to mammalian rod Gαt subunits and 79.7–80.9% to mammalian cone Gαts. The salamander Gαt-2 has 86.2–87.9% sequence identity to mammalian cone Gαts and 78.9–80.9% to mammalian rod Gαts at the amino acid level. The Gαt-1 cDNA encodes 350 amino acids while the Gαt-2 cDNA encodes 354 residues, which is typical for rod and cone Gαts, respectively, and we thus identified the Gαt-1 as rod and Gαt-2 as cone Gαt. Sequences identified as effector binding sites and GTPase activity regions are highly conserved between the two subunits. Genomic Southern blot analysis showed that rod and cone Gαt subunits are both encoded by single-copy genes. Northern blot analysis identified retina-specific transcripts of 3.0 kb for rod Gαt and 2.6 kb for cone Gαt. Immunohistochemistry in the flat-mounted salamander retina demonstrated that rod Gαt is localized to rods, predominantly in the outer segments; similarly, cone Gαt is localized to cone outer segments. The results confirm that the two sequences encode rod and cone transducins and demonstrate that this lower vertebrate contains two distinct transducins that are localized specifically to rod and cone photoreceptors.


1994 ◽  
Vol 42 (11) ◽  
pp. 1513-1517 ◽  
Author(s):  
P Roussel ◽  
V Sirri ◽  
D Hernandez-Verdun

Ribosomal genes are associated with a set of silver-stained nucleolar proteins, the Ag-NOR proteins, whose amount is directly related to the duration of the cell cycle. Quantification of Ag-NOR proteins by image analysis is presently used to evaluate the rate of proliferation of cancer cells and nucleolar activity. Our objective was to establish a procedure to quantify independently each major Ag-NOR protein in cell extracts. Computerized densitometry established that the specific silver staining of Ag-NOR proteins (Ag-NOR staining) performed on Western blots makes it possible to quantify Ag-NOR proteins. Using purified Ag-NOR proteins, nucleolin, and protein B23, we observed that the intensity of Ag-NOR staining is proportional to the amount of protein. A linear relationship exists between the intensity of Ag-NOR staining and the amount of nucleolin, in the range of 0.2-1.6 micrograms. Using total nuclear extracts prepared from mammalian cells, the proportionality was maintained for total Ag-NOR-stained proteins or for a particular protein. We also determined the levels of nuclear proteins suitable for quantitative analysis. Individual Ag-NOR proteins can be quantified by computerized densitometry in nuclear extracts after Ag-NOR staining on Western blots. This procedure can be applied to establish the contribution of each Ag-NOR protein in general staining, estimate the variability of each Ag-NOR protein in normal and pathological conditions, and quantify each Ag-NOR protein contained per cell.


Development ◽  
1988 ◽  
Vol 103 (3) ◽  
pp. 601-610
Author(s):  
M. Falzon ◽  
S.Y. Chung

Seven rat homeobox-containing sequences have been isolated by screening a genomic library with a probe derived from a Drosophila antennapedia cDNA clone. The characterization of two of these homeobox-containing clones has been described (Falzon, M., Sanderson, N.D. and Chung, S. Y. (1987) Gene 54, 23–32). Sequence analysis of the remaining five homeobox regions reveals a 180 bp domain sharing 70–95% identity at the amino acid level with the homeodomain from the Drosophila antennapedia gene and with the homeodomains from other metazoan species. Genomic blot analysis shows that each of the homeobox-containing DNA segments is probably present in a single copy per haploid genome. Northern blot analysis of RNA transcripts indicates that the rat homeobox-containing sequences are expressed during embryogenesis and in newborn and adult tissues in a tissue-specific manner; RNA expression is predominantly detected in spinal cord and kidney. Moreover, the pattern of RNA transcripts observed is distinct for each homeobox sequence, indicating differential regulation. Among the seven rat homeobox-containing sequences, the flanking sequences of five of the clones have no obvious sequence similarity with previously published sequences of homeobox-containing genes from other species. Two of the rat clones have been identified as potential homologues to mouse homeobox-containing sequences. For both pairs, a high degree of amino acid conservation (greater than 95%) is observed within the homeodomain and its immediate flanking regions between the putative homologous genes in mouse and rat. This strengthens the assertion that some of the mammalian homeobox-containing genes encode highly conserved proteins and may serve important biological functions.


1993 ◽  
Vol 105 (4) ◽  
pp. 903-911 ◽  
Author(s):  
L. Trivinos-Lagos ◽  
T. Ohmachi ◽  
C. Albrightson ◽  
R.G. Burns ◽  
H.L. Ennis ◽  
...  

As a step in the characterization of the microtubule system of Dictyostelium discoideum, we have isolated and sequenced full-length cDNA clones that encode the Dictyostelium alpha- and beta-tubulins, as well as the Dictyostelium alpha-tubulin gene. Southern blot analysis suggests that Dictyostelium is unusual in that its genome contains single alpha- and beta-tubulin genes, rather than the multi-gene family common in most eukaryotic organisms. The complete alpha-tubulin cDNA contains 1558 nucleotides, with an open reading frame, that encode a protein of 457 amino acids. The complete beta-tubulin cDNA contains 1572 nucleotides and encodes a protein of 456 amino acids. Analysis of the deduced protein sequences indicates that while there is a significant degree of sequence similarity between the Dictyostelium tubulins and other known tubulins, the Dictyostelium alpha-tubulin displays the greatest sequence divergence yet described. Single alpha- and beta-tubulin transcripts are detected by northern blot analysis during all stages of Dictyostelium development. The highest levels of message accumulate late in germinating spores and vegetative amoebae. Despite changes in alpha- and beta-tubulin mRNA levels, protein levels remain constant throughout development. We have expressed the carboxy-terminal two-thirds of the alpha- and beta-tubulins as trpE fusions in Escherichia coli and used this protein to produce polyclonal antisera specific for the Dictyostelium alpha- and beta-tubulins. These antisera recognize one alpha- and two beta-tubulin spots on western blots of 2-D gels and, by indirect immunofluorescence, both recognize the interphase and mitotic microtubule arrays in vegetative amoebae.


2021 ◽  
Vol 22 (2) ◽  
pp. 687
Author(s):  
Tong Zhou ◽  
Bolan Zhou ◽  
Yasong Zhao ◽  
Qing Li ◽  
Guili Song ◽  
...  

Most currently available bioreactors have some defects in the expression, activity, or purification of target protein and peptide molecules, whereas the mucus gland of fish can overcome these defects to become a novel bioreactor for the biopharmaceutical industry. In this study, we have evaluated the practicability of developing a mucus gland bioreactor in loach (Paramisgurnus dabryanus). A transgenic construct pT2-krt8-IFN1 was obtained by subcloning the promoter of zebrafish keratin 8 gene and the type I interferon (IFN1) cDNA of grass carp into the SB transposon. The IFN1 expressed in CIK cells exhibited an antiviral activity against the replication of GCRV873 and activated two genes downstream of JAK-STAT signaling pathway. A transgenic loach line was then generated by microinjection of the pT2-krt8-IFN1 plasmids and in vitro synthesized capped SB11 mRNA. Southern blots indicated that a single copy of IFN1 gene was stably integrated into the genome of transgenic loach. The expression of grass carp IFN1 in transgenic loaches was detected with RT-PCR and Western blots. About 0.0825 µg of grass carp IFN1 was detected in 20 µL mucus from transgenic loaches. At a viral titer of 1 × 103 PFU/mL, plaque numbers on plates containing mucus from transgenic loaches reduced by 18% in comparison with those of the control, indicating that mucus of IFN1-transgenic loaches exhibited an antiviral activity. Thus, we have successfully created a mucus gland bioreactor that has great potential for the production of various proteins and peptides.


2003 ◽  
Vol 10 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Tamece T. Knowles ◽  
A. Rick Alleman ◽  
Heather L. Sorenson ◽  
David C. Marciano ◽  
Edward B. Breitschwerdt ◽  
...  

ABSTRACT Canine monocytic ehrlichiosis, caused by Ehrlichia canis or Ehrlichia chaffeensis, can result in clinical disease in naturally infected animals. Coinfections with these agents may be common in certain areas of endemicity. Currently, a species-specific method for serological diagnosis of monocytic ehrlichiosis is not available. Previously, we developed two indirect enzyme-linked immunosorbent assays (ELISAs) using the major antigenic protein 2 (MAP2) of E. chaffeensis and E. canis. In this study, we further characterized the conservation of MAP2 among various geographic isolates of each organism and determined if the recombinant MAP2 (rMAP2) of E. chaffeensis would cross-react with E. canis-infected dog sera. Genomic Southern blot analysis using digoxigenin-labeled species-specific probes suggested that map2 is a single-copy gene in both Ehrlichia species. Sequences of the single map2 genes of seven geographically different isolates of E. chaffeensis and five isolates of E. canis are highly conserved among the various isolates of each respective ehrlichial species. ELISA and Western blot analysis confirmed that the E. chaffeensis rMAP2 failed to serologically differentiate between E. canis and E. chaffeensis infections.


2001 ◽  
Vol 21 (11) ◽  
pp. 3738-3749 ◽  
Author(s):  
Ulf Andersson ◽  
Richard C. Scarpulla

ABSTRACT The thermogenic peroxisome proliferator-activated receptor γ (PPAR-γ) coactivator 1 (PGC-1) has previously been shown to activate mitochondrial biogenesis in part through a direct interaction with nuclear respiratory factor 1 (NRF-1). In order to identify related coactivators that act through NRF-1, we searched the databases for sequences with similarities to PGC-1. Here, we describe the first characterization of a 177-kDa transcriptional coactivator, designated PGC-1-related coactivator (PRC). PRC is ubiquitously expressed in murine and human tissues and cell lines; but unlike PGC-1, PRC was not dramatically up-regulated during thermogenesis in brown fat. However, its expression was down-regulated in quiescent BALB/3T3 cells and was rapidly induced by reintroduction of serum, conditions where PGC-1 was not detected. PRC activated NRF-1-dependent promoters in a manner similar to that observed for PGC-1. Moreover, NRF-1 was immunoprecipitated from cell extracts by antibodies directed against PRC, and both proteins were colocalized to the nucleoplasm by confocal laser scanning microscopy. PRC interacts in vitro with the NRF-1 DNA binding domain through two distinct recognition motifs that are separated by an unstructured proline-rich region. PRC also contains a potent transcriptional activation domain in its amino terminus adjacent to an LXXLL motif. The spatial arrangement of these functional domains coincides with those found in PGC-1, supporting the conclusion that PRC and PGC-1 are structurally and functionally related. We conclude that PRC is a functional relative of PGC-1 that operates through NRF-1 and possibly other activators in response to proliferative signals.


Gene ◽  
1986 ◽  
Vol 41 (2-3) ◽  
pp. 165-172 ◽  
Author(s):  
Laura F. Steel ◽  
Allan Jacobson

2013 ◽  
Vol 304 (5) ◽  
pp. F522-F532 ◽  
Author(s):  
Luca Vedovelli ◽  
John T. Rothermel ◽  
Karin E. Finberg ◽  
Carsten A. Wagner ◽  
Anie Azroyan ◽  
...  

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1−/−) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1−/− and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915–F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1−/− mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1+/+ mice) with Atp6v1b1−/− mice to generate novel EGFP-B1−/− mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1+/+ and EGFP-B1−/− mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1−/− mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.


1994 ◽  
Vol 304 (3) ◽  
pp. 699-705 ◽  
Author(s):  
G Frosina ◽  
P Fortini ◽  
O Rossi ◽  
F Carrozzino ◽  
A Abbondandolo ◽  
...  

Hamster cell extracts that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers, were used to study the repair of apurinic/apyrimidinic (AP) sites and methoxyamine (MX)-modified AP sites. Plasmid molecules were heat-treated at pH 5 and incubated with MX when required. The amount of damage introduced ranged from 0.2 to 0.9 AP sites/kb. Extracts were prepared from the Chinese hamster ovary CHO-9 cell line and from its derivative, 43-3B clone which is mutated in the nucleotide excision repair (NER) ERCC1 gene. AP and MX-AP sites stimulated repair synthesis by CHO-9 cell extracts. The level of synthesis correlated with the number of lesions and was of similar magnitude to the repair stimulated by 4.3 u.v. photoproducts/kb. Repair of AP and MX-AP sites was faster than the repair of u.v. damage and was independent of ERCC1 gene product. The high level of repair replication was due to a very efficient and rapid incision of plasmids carrying AP or MX-AP sites, performed by abundant AP endonucleases present in the extract. The calculated average repair patch sizes were: 7 nucleotides per AP site; 10 nucleotides per MX-AP site; 28 nucleotides per (6-4) u.v. photoproduct or cyclobutane pyrimidine dimer. The data indicate that AP and MX-AP sites are very efficiently repaired by base-excision repair in mammalian cells and suggest that MX-AP sites may also be processed via alternative repair mechanisms.


Sign in / Sign up

Export Citation Format

Share Document