scholarly journals Calcium requirements during mitotic cdc2 kinase activation and cyclin degradation in Xenopus egg extracts

1995 ◽  
Vol 108 (11) ◽  
pp. 3557-3568 ◽  
Author(s):  
H.D. Lindsay ◽  
M.J. Whitaker ◽  
C.C. Ford

Activation of p34cdc2 kinase is essential for entry into mitosis while subsequent deactivation and cyclin degradation are associated with exit. In Xenopus embryos, both of these phases are regulated by post-translation modifications and occur spontaneously on incubation of extracts prepared late in the first cell cycle. Even though high levels of calcium buffer were initially used to prepare these extracts, we found that free calcium levels in them remained in the observed physiological range (200-500 nM). Further addition of calcium buffers only slightly reduced free calcium levels, but inhibited histone H1 (cdc2A) kinase deactivation and cyclin degradation. Higher buffer concentrations slowed the kinase activation phase. Reducing the free buffer concentration by premixing with calcium reversed the effects of the buffer, indicating that the inhibitory effects arose from the calcium-chelating properties of the buffer rather than non-specific side effects. Furthermore, additions of calcium buffer at the end of the H1 kinase activation phase did not prevent deactivation. From these results, and the order of effectiveness of different calcium buffers in disrupting the H1 kinase cycle, we suggest that local transient increases in free calcium influence the rate of cdc2 kinase activation and are required to initiate the pathway leading to cyclin degradation and kinase inactivation in mitotic cell cycles.

1992 ◽  
Vol 3 (8) ◽  
pp. 927-939 ◽  
Author(s):  
T Izumi ◽  
D H Walker ◽  
J L Maller

The cdc25 tyrosine phosphatase is known to activate cdc2 kinase in the G2/M transition by dephosphorylation of tyrosine 15. To determine how entry into M-phase in eukaryotic cells is controlled, we have investigated the regulation of the cdc25 protein in Xenopus eggs and oocytes. Two closely related Xenopus cdc25 genes have been cloned and sequenced and specific antibodies generated. The cdc25 phosphatase activity oscillates in both meiotic and mitotic cell cycles, being low in interphase and high in M-phase. Increased activity of cdc25 at M-phase is accompanied by increased phosphorylation that retards electrophoretic mobility in gels from 76 to 92 kDa. Treatment of cdc25 with either phosphatase 1 or phosphatase 2A removes phosphate from cdc25, reverses the mobility shift, and decreases its ability to activate cdc2 kinase. Furthermore, the addition of okadaic acid to egg extracts arrested in S-phase by aphidicolin causes phosphorylation and activation of the cdc25 protein before cyclin B/cdc2 kinase activation. These results demonstrate that the activity of the cdc25 phosphatase at the G2/M transition is directly regulated through changes in its phosphorylation state.


1996 ◽  
Vol 109 (1) ◽  
pp. 239-246 ◽  
Author(s):  
A. Abrieu ◽  
T. Lorca ◽  
J.C. Labbe ◽  
N. Morin ◽  
S. Keyse ◽  
...  

Unfertilized frog eggs arrest at the second meiotic metaphase, due to cytostatic activity of the c-mos proto-oncogene (CSF). MAP kinase has been proposed to mediate CSF activity in suppressing cyclin degradation. Using an in vitro assay to generate CSF activity, and recombinant CL 100 phosphatase to inactivate MAP kinase, we confirm that the c-mos proto-oncogene blocks cyclin degradation through MAP kinase activation. We further show that for MAP kinase to suppress cyclin degradation, it must be activated before cyclin B-cdc2 kinase has effectively promoted cyclin degradation. Thus MAP kinase does not inactivate, but rather prevents the cyclin degradation pathway from being turned on. Using a constitutively active mutant of Ca2+/calmodulin dependent protein kinase II, which mediates the effects of Ca2+ at fertilization, we further show that the kinase can activate cyclin degradation in the presence of both MPF and the c-mos proto-oncogene without inactivating MAP kinase.


1999 ◽  
Vol 112 (22) ◽  
pp. 3975-3984
Author(s):  
C. Beckhelling ◽  
C. Penny ◽  
S. Clyde ◽  
C. Ford

Mitosis is governed by the activity of the M-phase promoting factor (MPF). In some systems, particularly early embryos, transient increases in calcium concentration have been shown to be necessary for mitosis and regulate its timing. By microinjection of the calcium buffer, dibromoBAPTA, into fertilised Xenopus eggs, we have assessed whether calcium events are required to initiate MPF activation and inactivation. Since initial experiments showed that this buffer inhibited protein synthesis, we measured when mitosis and cleavage became independent of translation. We found that, after a period of protein synthesis essential for cleavage, there was a phase during which continued translation affected the timing of cleavage, but was not essential for its occurrence. Measurement of MPF activity in single embryos injected with calcium buffer at different times in the first cell cycle, showed that there were two sensitive periods. The first period of sensitivity blocked MPF activation and coincided with the time at which cleavage became completely independent of protein synthesis. The second sensitive period occurred just before histone kinase activity peaked, and was necessary for kinase inactivation. Preventing inactivation in this way arrested egg extracts in mitosis. These results support the view that transient increases in free calcium concentration contribute to mitotic progression by first triggering MPF activation and subsequently, with elevated MPF activity, inducing its inactivation.


1993 ◽  
Vol 13 (6) ◽  
pp. 3744-3755 ◽  
Author(s):  
C S Stueland ◽  
D J Lew ◽  
M J Cismowski ◽  
S I Reed

In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.


2008 ◽  
Vol 183 (6) ◽  
pp. 1007-1017 ◽  
Author(s):  
Simone Reber ◽  
Sabine Over ◽  
Iva Kronja ◽  
Oliver J. Gruss

Altered spindle microtubule dynamics at anaphase onset are the basis for chromosome segregation. In Xenopus laevis egg extracts, increasing free calcium levels and subsequently rising calcium-calmodulin–dependent kinase II (CaMKII) activity promote a release from meiosis II arrest and reentry into anaphase. CaMKII induces the activation of the anaphase-promoting complex/cyclosome (APC/C), which destines securin and cyclin B for degradation to allow chromosome separation and mitotic exit. In this study, we investigated the calcium-dependent signal responsible for microtubule depolymerization at anaphase onset after release from meiotic arrest in Xenopus egg extracts. Using Ran–guanosine triphosphate–mediated microtubule assemblies and quantitative analysis of complete spindles, we demonstrate that CaMKII triggers anaphase microtubule depolymerization. A CaMKII-induced twofold increase in microtubule catastrophe rates can explain reduced microtubule stability. However, calcium or constitutively active CaMKII promotes microtubule destabilization even upon APC/C inhibition and in the presence of high cyclin-dependent kinase 1 activity. Therefore, our data demonstrate that CaMKII turns on parallel pathways to activate the APC/C and to induce microtubule depolymerization at meiotic anaphase onset.


2020 ◽  
Author(s):  
Mehmet Erguven ◽  
M. Kasim Diril

ABSTRACTMastl (Greatwall) kinase is an essential mitotic protein kinase. Mastl is an atypical member of AGC family with a unique long stretch of non-conserved middle region. The mechanism of its phosphorylation dependent activation has been studied in Xenopus egg extracts, revealing several phosphosites that were suggested to be crucial for kinase activation. These residues correspond to T193 and T206 in the activation loop, and S861 in the C-tail of mouse Mastl. By combining a chemically inducible knockout system to deplete the endogenous Mastl and a viral expression system to ectopically express the mutant variants, we obtained a viable knockout clone that expresses the S861A and S861D mutants. We observed that proliferation rates of the MastlS861A and MastlS861D clones were comparable. Our results have revealed that phosphorylation of the turn motif phosphosite (S861) is auxiliary and it is not indispensable for Mastl function.


1992 ◽  
Vol 101 (1) ◽  
pp. 69-78 ◽  
Author(s):  
S. Faruki ◽  
M. Doree ◽  
E. Karsenti

During the interphase to metaphase transition, microtubules are destabilized by a cdc2 kinase-dependent phosphorylation event. This destabilization is due to a dramatic increase in the rate at which each growing microtubule starts to shrink (catastrophe rate). In principle, this could be brought about by lowering the affinity of stabilizing MAPs for the microtubule wall, by activating a factor that would actively increase the catastrophe rate or by an alteration of both parameters. Here we examine the stabilizing effect of bovine brain MAP2 on microtubules assembled in interphase Xenopus egg extracts. We show that this MAP strongly stabilizes microtubules assembled in the extracts against nocodazole-induced depolymerization. However, it does not protect them from the cdc2 kinase-induced shortening and destabilization. Moreover, the steady-state length of centrosome-nucleated microtubules in cdc2-treated extracts containing MAP2 is similar to that found in extracts lacking exogenous MAP2. We also show that although exogenous MAP2 is phosphorylated by cdc2 kinase in the extract, this is not the cause of microtubule destabilization. These results indicate that increased microtubule dynamics during mitosis is due to the activation of a factor that can function independently of the presence of active, stabilizing factors.


1991 ◽  
Vol 11 (8) ◽  
pp. 3860-3867
Author(s):  
T Izumi ◽  
J L Maller

The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.


1993 ◽  
Vol 4 (4) ◽  
pp. 397-411 ◽  
Author(s):  
P R Clarke ◽  
I Hoffmann ◽  
G Draetta ◽  
E Karsenti

We have examined the roles of type-1 (PP-1) and type-2A (PP-2A) protein-serine/threonine phosphatases in the mechanism of activation of p34cdc2/cyclin B protein kinase in Xenopus egg extracts. p34cdc2/cyclin B is prematurely activated in the extracts by inhibition of PP-2A by okadaic acid but not by specific inhibition of PP-1 by inhibitor-2. Activation of the kinase can be blocked by addition of the purified catalytic subunit of PP-2A at a twofold excess over the activity in the extract. The catalytic subunit of PP-1 can also block kinase activation, but very high levels of activity are required. Activation of p34cdc2/cyclin B protein kinase requires dephosphorylation of p34cdc2 on Tyr15. This reaction is catalysed by cdc25-C phosphatase that is itself activated by phosphorylation. We show that, in interphase extracts, inhibition of PP-2A by okadaic acid completely blocks cdc25-C dephosphorylation, whereas inhibition of PP-1 by specific inhibitors has no effect. This indicates that a type-2A protein phosphatase negatively regulates p34cdc2/cyclin B protein kinase activation primarily by maintaining cdc25-C phosphatase in a dephosphorylated, low activity state. In extracts containing active p34cdc2/cyclin B protein kinase, dephosphorylation of cdc25-C is inhibited, whereas the activity of PP-2A (and PP-1) towards other substrates is unaffected. We propose that this specific inhibition of cdc25-C dephosphorylation is part of a positive feedback loop that also involves direct phosphorylation and activation of cdc25-C by p34cdc2/cyclin B. Dephosphorylation of cdc25-C is also inhibited when cyclin A-dependent protein kinase is active, and this may explain the potentiation of p34cdc2/cyclin B protein kinase activation by cyclin A. In extracts supplemented with nuclei, the block on p34cdc2/cyclin B activation by unreplicated DNA is abolished when PP-2A is inhibited or when stably phosphorylated cdc25-C is added, but not when PP-1 is specifically inhibited. This suggests that unreplicated DNA inhibits p34cdc2/cyclin B activation by maintaining cdc25-C in a low activity, dephosphorylated state, probably by keeping the activity of a type-2A protein phosphatase towards cdc25-C at a high level.


Sign in / Sign up

Export Citation Format

Share Document