Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins

1997 ◽  
Vol 110 (9) ◽  
pp. 1099-1111 ◽  
Author(s):  
J.M. Paramio ◽  
M.L. Casanova ◽  
A. Alonso ◽  
J.L. Jorcano

To study the dynamics of keratin intermediate filaments, we fused two different types of epithelial cells (PtK2 and BMGE+H) and studied how the keratins from the parental cells recombine and copolymerize to form the heterokaryon cytoskeleton. The behaviour of the keratins during this process was followed by immunofluorescence using specific antibodies. After fusion, the parental cytoskeletons undergo a depolymerization process most apparent in the region adjacent to the fusion area. The depolymerized subunits spread throughout the heterokaryon and copolymerize into a new hybrid cytoskeleton. The complete process is very rapid, occurring in 3–4 hours, thus demonstrating the highly dynamic nature of the keratin cytoskeleton. Although newly synthesised subunits contribute to the formation of the hybrid cytoskeleton, the process takes place with similar kinetics in the absence of protein synthesis, showing the dynamic nature of the keratins from pre-existing cytoskeletons. During this process, specific keratins behave differently. Keratins K8, K18, K5 and K10 are mobilised from the parental cytoskeletons and reassemble rapidly into the hybrid cytoskeleton (3–6 hours), whereas K14 requires a substantially longer period (9–24 hours). Thus, different keratins, even when they form part of the same heterodimeric/tetrameric complexes, as is the case for K5 and K14, exhibit different dynamics. This suggests that individual polypeptides or homopolymeric complexes rather than exclusively heterodimeric/ tetrameric subunits, as is currently thought, can also take part in keratin intermediate filament assembly and dynamics. Biochemical analysis performed in the absence of protein synthesis revealed greater amounts of K5 than of K14 in the soluble pool of BMGE+H cells. Crosslinking and immunoprecipitation experiments indicated an excess of monomeric K5, as well as of K5/K14 heterodimers and K5 homodimers in the soluble pool. These results are in agreement with the different dynamic behaviour of these keratins observed in immunofluorescence. On the contrary, the phosphorylation levels of K5 and K14 are similar in both the soluble pool and the polymerized fraction, suggesting that phosphorylation does not play an important role in the different dynamics displayed by these two proteins. In summary, our results demonstrate that, following fusion, the keratin intermediate filament network reshapes rather rapidly and that keratins are highly dynamic proteins, although this mobility depends on each particular polypeptide.

1995 ◽  
Vol 108 (10) ◽  
pp. 3279-3284 ◽  
Author(s):  
C. Cui ◽  
P.J. Stambrook ◽  
L.M. Parysek

The properties of full-length and mutant peripherins were studied in intermediate filament-less SW13 cells to define regions of peripherin that are essential for initiation of filament assembly. A full-length rat peripherin gene transfected into SW13 cells resulted in filament formation, consistent with the close structural relationship of peripherin to other type III intermediate filament proteins that readily form homopolymers. Translation of full-length rat peripherin is initiated predominantly at the second of two inframe AUGs. Deletions within the amino terminus of wild-type peripherin abolished its ability to form filaments in SW13 cells. In contrast, deletion of the entire carboxyl-terminal tail of peripherin did not affect its ability to form filamentous arrays in transfected SW13 cells. These results indicate that, of the intermediate filament proteins that are expressed in mature neurons, only peripherin and alpha-internexin are capable of making homopolymer intermediate filaments. In addition, mutations of the carboxyl tail of peripherin generally do not interfere with filament network formation.


2020 ◽  
Vol 31 (9) ◽  
pp. 930-943 ◽  
Author(s):  
Richard A. Mariani ◽  
Shalaka Paranjpe ◽  
Radek Dobrowolski ◽  
Gregory F. Weber

14-3-3 serves as a major regulator of keratin intermediate filament dynamics in vivo. Migratory mesendoderm tissue of the Xenopus embryo is used to show that the dynamic reorganization of keratin filaments, a consequence of force on cell-cell adhesions, is mediated by a novel association between 14-3-3 and Keratin 19.


2018 ◽  
Author(s):  
Rucha Sanghvi-Shah ◽  
Shalaka Paranjpe ◽  
Jiyeon Baek ◽  
Radek Dobrowolski ◽  
Gregory F. Weber

AbstractThe significance of cytoplasmic intermediate filament proteins has previously been examined largely through various genetic approaches, including knockdown, knockout and transgenic overexpression. Few studies to date have attempted to examine the role of specifically the filamentous intermediate filament network in orchestrating various cell functions. To directly assess the role of the filamentous keratin intermediate filament network in regulation of cellular behavior, we created a PhotoActivatable disruptor of keratin Intermediate Filaments (PA-dIF). This genetically encoded construct consists of a peptide derived from the 2B2 region of Keratin 8 fused to the photosensitive LOV2 domain from Avena sativa phototropin-1. Upon 458 nm photoirradiation, PA-dIF disrupts keratin intermediate filaments in multiple species and cell types. Marked remodeling of the keratin intermediate filament network accompanies collective cellular morphogenetic movements that occur during gastrulation and neurulation in the Xenopus laevis frog embryo. Light-based activation of PA-dIF was able to disrupt keratin intermediate filaments in Xenopus cells and lead to tissue-specific disruption of morphogenetic processes. Altogether our data show a fundamental requirement for keratin intermediate filaments in orchestrating morphogenetic movements during early embryonic development that have yet to be revealed in other model systems. Moreover, our data validate the utility of a new genetically encoded photoactivatable tool for the disruption and examination of intermediate filaments.


1979 ◽  
Vol 82 (2) ◽  
pp. 577-584 ◽  
Author(s):  
G S Bennett ◽  
S A Fellini ◽  
Y Toyama ◽  
H Holtzer

The distribution of intermediate filament (IF) subunits during maturation of skeletal myotubes in vitro was examined by immunofluorescence, using antibodies against two different types of chick IF subunits: (a) 58-kdalton subunits of fibroblasts (anti-58K), and (b) 55-kdalton subunits of smooth muscle (anti-55K). Anti-58K bound to a filament network in replicating presumptive myoblasts and fibroblasts, as well as in immature myotubes. The distribution in immature myotubes was in longitudinal filaments throughout the cytoplasm. With maturation, staining of myotubes by anti-58K diminished and eventually disappeared. Anti-55K selectively stained myotubes, and the fluorescence localization underwent a drastic change in distribution with maturation--from dense, longitudinal filaments in immature myotubes to a cross-striated distribution in mature myotubes that was associated with the I--Z region of myofibrils. However, the emergence of a cross-striated anti-55K pattern did not coincide temperally with the emergence of striated myofibrils, but occurred over a period of days thereafter.


2019 ◽  
Vol 38 (11) ◽  
Author(s):  
Sherif A Eldirany ◽  
Minh Ho ◽  
Alexander J Hinbest ◽  
Ivan B Lomakin ◽  
Christopher G Bunick

2001 ◽  
Vol 114 (6) ◽  
pp. 1079-1089 ◽  
Author(s):  
S.C. Schweitzer ◽  
M.W. Klymkowsky ◽  
R.M. Bellin ◽  
R.M. Robson ◽  
Y. Capetanaki ◽  
...  

De novo expression of vimentin, GFAP or peripherin leads to the assembly of an extended intermediate filament network in intermediate filament-free SW13/cl.2 cells. Desmin, in contrast, does not form extended filament networks in either SW13/cl.2 or intermediate filament-free mouse fibroblasts. Rather, desmin formed short thickened filamentous structures and prominent spot-like cytoplasmic aggregates that were composed of densely packed 9–11 nm diameter filaments. Analysis of stably transfected cell lines indicates that the inability of desmin to form extended networks is not due to a difference in the level of transgene expression. Nestin, paranemin and synemin are large intermediate filament proteins that coassemble with desmin in muscle cells. Although each of these large intermediate filament proteins colocalized with desmin when coexpressed in SW-13 cells, expression of paranemin, but not synemin or nestin, led to the formation of an extended desmin network. A similar rescue of desmin network organization was observed when desmin was coexpressed with vimentin, which coassembles with desmin, or with keratins, which formed a distinct filament network. These studies demonstrate that desmin filaments differ in their organizational properties from the other vimentin-like intermediate filament proteins and appear to depend upon coassembly with paranemin, at least when they are expressed in non-muscle cells, in order to form an extended filament network.


Development ◽  
1964 ◽  
Vol 12 (4) ◽  
pp. 609-619
Author(s):  
Anna Hell

Enormous progress has been made in the last few years towards the elucidation of the mechanism of protein synthesis, and great interest is centred on the steps leading to cellular differentiation and specific protein synthesis. We know that genetic information is passed on from one generation of cells to the next by deoxyribonucleic acid (DNA), and that this material directs all protein synthesis by the intermediary of the different types of ribonucleic acid (RNA). A simple in vitro system described by O'Brien (1959) seemed to offer an excellent tool for the study of the differentiation of the blood islands, and the initial formation of a well-known protein, haemoglobin (Hb), in chick embryonic tissues. After de-embryonation, chick blastoderms, from the stage of primitive streak onwards, can be cultured in vitro on a saline agar medium supplemented with glucose.


1998 ◽  
Vol 111 (13) ◽  
pp. 1767-1778 ◽  
Author(s):  
C.L. Ho ◽  
J.L. Martys ◽  
A. Mikhailov ◽  
G.G. Gundersen ◽  
R.K. Liem

In order to study the dynamic behavior of intermediate filament networks in living cells, we have prepared constructs fusing green fluorescent protein to intermediate filament proteins. Vimentin fused to green fluorescent protein labeled the endogenous intermediate filament network. We generated stable SW13 and NIH3T3 cell lines that express an enhanced green fluorescent protein fused to the N-terminus of full-length vimentin. We were able to observe the dynamic behavior of the intermediate filament network in these cells for periods as long as 4 hours (images acquired every 2 minutes). In both cell lines, the vimentin network constantly moves in a wavy manner. In the NIH3T3 cells, we observed extension of individual vimentin filaments at the edge of the cell. This movement is dependent on microtubules, since the addition of nocodazole stopped the extension of the intermediate filaments. Injection of anti-IFA causes the redistribution or ‘collapse’ of intermediate filaments. We injected anti-IFA antibodies into NIH3T3 cells stably expressing green fluorescent protein fused to vimentin and found that individual intermediate filaments move slowly towards the perinuclear area without obvious disassembly. These results demonstrate that individual intermediate filaments are translocated during the collapse, rather than undergoing disassembly-induced redistribution. Injections of tubulin antibodies disrupt the interactions between intermediate filaments and stable microtubules and cause the collapse of the vimentin network showing that these interactions play an important role in keeping the intermediate filament network extended. The nocodazole inhibition of intermediate filament extension and the anti-IFA microinjection experiments are consistent with a model in which intermediate filaments exhibit an extended distribution when tethered to microtubules, but are translocated to the perinuclear area when these connections are severed.


1994 ◽  
Vol 107 (6) ◽  
pp. 1593-1607 ◽  
Author(s):  
A.J. Sarria ◽  
J.G. Lieber ◽  
S.K. Nordeen ◽  
R.M. Evans

Human SW-13 cells express the intermediate filament protein vimentin in a mosaic pattern (Hedberg, K. K. and Chen, L. B. (1986). Exp. Cell Res. 163, 509–517). We have isolated SW-13 clones that do (vim+) or do not (vim-) synthesize vimentin as analyzed using anti-intermediate filament immunofluorescence, electron microscopy and two-dimensional gel analysis of detergent-extracted preparations. Vimentin is the only cytoplasmic intermediate filament protein present in the vim+ cells, and the vim- cells do not contain any detectable cytoplasmic intermediate filament system. The presence or absence of intermediate filaments did not observably affect the distribution of mitochondria, endoplasmic reticulum, microtubules or actin stress fibers when these structures were visualized by fluorescence microscopy. However, electron microscopy and anti-lamin A/C immunofluorescence studies showed that nuclear morphology in vim- cells was frequently characterized by large folds or invaginations, while vim+ cells had a more regular or smooth nuclear shape. When vim- cells were transfected with a mouse vimentin expression plasmid, the synthesis of a mouse vimentin filament network restored the smooth nuclear morphology characteristic of vim+ cells. Conversely, when vim+ cells were transfected with a carboxy-terminally truncated mutant vimentin, expression of the mutant protein disrupted the organization of the endogenous vimentin filaments and resulted in nuclei with a prominently invaginated morphology. These results indicated that in SW-13 cells the vimentin filament system affects the shape of the nucleus.


Sign in / Sign up

Export Citation Format

Share Document