scholarly journals Two proteins isolated from sea urchin sperm flagella: structural components common to the stable microtubules of axonemes and centrioles

1998 ◽  
Vol 111 (5) ◽  
pp. 585-595 ◽  
Author(s):  
E.H. Hinchcliffe ◽  
R.W. Linck

Biochemical fractionation of axonemal microtubules yields the protofilament ribbon (pf-ribbon), an insoluble structure of 3–4 longitudinal protofilaments composed primarily of alpha/beta tubulin, tektins A, B and C, and two previously uncharacterized polypeptides of 77 kDa and 83 kDa. We have isolated the 77/83 kDa polypeptides (termed Sp77 and Sp83) from sperm flagella of the sea urchin Stronglyocentrotus purpuratus and raised polyclonal antibodies against them. Sp77 and Sp83 copurify exclusively with the pf-ribbon. Both the anti-Sp77 and anti-Sp83 antibodies detected the nine outer doublets and the basal bodies of sea urchin sperm by immunofluorescence microscopy. In addition, the anti-Sp83 antibody, but not the anti-Sp77 antibody, detected a single 83 kDa polypeptide on immunoblots of unfertilized sea urchin egg cytoplasm, and a single polypeptide of 80 kDa on blots of isolated mitotic spindles from Chinese hamster ovary (CHO) cells. Previous studies have shown that tektins are present in the basal bodies and centrosomes/centrioles of cells ranging from clam to human. We found that anti-Sp83 decorates the spindle poles in sea urchin zygotes, and the interphase centrosome and spindle poles in CHO cells. In CHO cells arrested in S phase with aphidicolin, anti-Sp83 detects multiple centrosomes. The staining of the centrosome was not disrupted by prolonged nocodazole treatment, suggesting that the 80 kDa polypeptide is associated with the centrioles themselves. Our observations demonstrate that, like tektins, Sp77 and Sp83 are structural proteins associated with stable doublet microtubules, and may be components of basal bodies and centrioles of sea urchins and mammalian cells.

1994 ◽  
Vol 107 (8) ◽  
pp. 2095-2105 ◽  
Author(s):  
W. Steffen ◽  
E.A. Fajer ◽  
R.W. Linck

Centrosomes are critical for the nucleation and organization of the microtubule cytoskeleton during both interphase and cell division. Using antibodies raised against sea urchin sperm flagellar microtubule proteins, we characterize here the presence and behavior of certain components associated with centrosomes of the surf clam Spisula solidissima and cultured mammalian cells. A Sarkosyl detergent-resistant fraction of axonemal microtubules was isolated from sea urchin sperm flagella and used to produce monoclonal antibodies, 16 of which were specific- or cross-specific for the major polypeptides associated with this microtubule fraction: tektins A, B and C, acetylated alpha-tubulin, and 77 and 83 kDa polypeptides. By 2-D isoelectric focussing/SDS polyacrylamide gel electrophoresis the tektins separate into several polypeptide spots. Identical spots were recognized by monoclonal and polyclonal antibodies against a given tektin, indicating that the different polypeptide spots are isoforms or modified versions of the same protein. Four independently derived monoclonal anti-tektins were found to stain centrosomes of S. solidissima oocytes and CHO and HeLa cells, by immunofluorescence microscopy. In particular, the centrosome staining of one monoclonal antibody specific for tektin B (tekB3) was cell-cycle-dependent for CHO cells, i.e. staining was observed only from early prometaphase until late anaphase. By immuno-electron microscopy tekB3 specifically labeled material surrounding the centrosome, whereas a polyclonal anti-tektin B recognized centrioles as well as the centrosomal material throughout the cell cycle. Finally, by immunoblot analysis tekB3 stained polypeptides of 48–50 kDa in isolated spindles and centrosomes from CHO cells.


Zygote ◽  
2021 ◽  
pp. 1-12
Author(s):  
Arlet Loza-Huerta ◽  
Hiram Pacheco-Castillo ◽  
Alberto Darszon ◽  
Carmen Beltrán

Summary Fertilization, a crucial event for species preservation, in sea urchins, as in many other organisms, requires sperm motility regulation. In Strongylocentrotus purpuratus sea urchins, speract, a sperm chemoattractant component released to seawater from the outer egg layer, attracts sperm after binding to its receptor in the sperm flagellum. Previous experiments performed in demembranated sperm indicated that motility regulation in these cells involved protein phosphorylation mainly due to the cAMP-dependent protein kinase (PKA). However, little information is known about the involvement of protein kinase C (PKC) in this process. In this work, using intact S. purpuratus sea urchin sperm, we show that: (i) the levels of both phosphorylated PKA (PKA substrates) and PKC (PKC substrates) substrates change between immotile, motile and speract-stimulated sperm, and (ii) the non-competitive PKA (H89) and PKC (chelerythrine) inhibitors diminish the circular velocity of sperm and alter the phosphorylation levels of PKA substrates and PKC substrates, while the competitive inhibitors Rp-cAMP and bisindolylmaleimide (BIM) do not. Altogether, our results show that both PKA and PKC participate in sperm motility regulation through a crosstalk in the signalling pathway. These results contribute to a better understanding of the mechanisms that govern motility in sea urchin sperm.


Development ◽  
1990 ◽  
Vol 108 (4) ◽  
pp. 525-542 ◽  
Author(s):  
M. Whitaker ◽  
R. Patel

The cell division cycle of the early sea urchin embryo is basic. Nonetheless, it has control points in common with the yeast and mammalian cell cycles, at START, mitosis ENTRY and mitosis EXIT. Progression through each control point in sea urchins is triggered by transient increases in intracellular free calcium. The Cai transients control cell cycle progression by translational and post-translational regulation of the cell cycle control proteins pp34 and cyclin. The START Cai transient leads to phosphorylation of pp34 and cyclin synthesis. The mitosis ENTRY Cai transient triggers cyclin phosphorylation. The motosis EXIT transient causes destruction of phosphorylated cyclin. We compare cell cycle regulation by calcium in sea urchin embryos to cell cycle regulation in other eggs and oocytes and in mammalian cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noriko Yamano-Adachi ◽  
Rintaro Arishima ◽  
Sukwattananipaat Puriwat ◽  
Takeshi Omasa

Abstract Chinese hamster (Cricetulus griseus) ovary-derived Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the industrial production of recombinant therapeutics because of their ability to fold, assemble, and perform post-translational modifications, such as glycosylation, on proteins. They are also valuable for their ability to grow in serum-free suspension cultures. In this study, we established a cell line derived from lung tissue of Chinese hamsters, named Chinese hamster lung (CHL)-YN cells. The biosafety of CHL-YN cells was confirmed by in vitro sterility testing, mycoplasma detection, and reverse transcriptase assays. One of the key characteristics of CHL-YN cells was their doubling time of 8.1 h in chemically defined culture medium; thus, they proliferate much faster than conventional CHO cells and general mammalian cells. Transgenes could be introduced into CHL-YN cells with high efficiency. Finally, between 50% to > 100% of the amount of glycosylated immunoglobulin G (IgG)1 produced by CHO-K1 cells was produced by CHL-YN cells over a shorter period of time. In summary, fast-growing CHL-YN cells are a unique cell line for producing recombinant proteins.


1990 ◽  
Vol 10 (9) ◽  
pp. 4524-4528 ◽  
Author(s):  
C G Maki ◽  
D D Rhoads ◽  
J J Diaz ◽  
D J Roufa

A cDNA expression vector encoding Drosophila ribosomal protein S14 was transfected into cultured Chinese hamster ovary (CHO) cells that harbor a recessive RPS14 emetine resistance mutation. Transformants synthesized the insect mRNA and polypeptide and consequently displayed an emetine-sensitive phenotype. These observations indicate that the insect protein was accurately expressed and correctly assembled into functional mammalian 40S ribosomal subunits.


Reproduction ◽  
2004 ◽  
Vol 127 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Anna T Neill ◽  
Victor D Vacquier

Sea urchins have long been a model system for the study of fertilization. Much has been learned about how sea urchin sperm locate and fertilize the egg. Sperm and eggs are spawned simultaneously into the surrounding seawater. Sperm signaling pathways lead to downstream events that ensure fertilization. Upon spawning, sperm must acquire motility and then they must swim towards or respond to the egg in some way. Finally, they must undergo a terminal exocytotic event known as the acrosome reaction that allows the sperm to bind to the vitelline layer of the egg and then to fuse with the egg plasma membrane. Motility is stimulated by exposure to seawater, while later events are orchestrated by factors from the egg. The sperm signaling pathways are exquisitely tuned to bring the sperm to the egg, bind, and fuse the two cells as quickly as possible.


1996 ◽  
Vol 183 (3) ◽  
pp. 991-999 ◽  
Author(s):  
M Watarai ◽  
S Funato ◽  
C Sasakawa

Shigella is a genus of highly adapted bacterial pathogens that cause bacillary dysentery in humans. Bacteria reaching the colon invade intestinal epithelial cells by a process of bacterial-directed endocytosis mediated by the Ipa proteins: IpaB, IpaC, and IpaD of Shigella. The invasion of epithelial cells is thought to be a receptor-mediated phenomenon, although the cellular components of the host that interact with the Ipa proteins have not yet been identified. We report here that in a Shigella flexneri invasive system and Chinese hamster ovary (CHO) cell monolayers, the Ipa proteins were capable of interacting directly with alpha5beta1 integrin. The invasive capacity of S. flexneri for CHO cells increased as levels of alpha5beta1 integrin were elevated. When CHO cells were infected with S. flexneri, the tyrosine phosphorylation both of pp 125FAK, an integrin-regulated 125 K focal adhesion kinase, and of paxillin was stimulated. In contrast, an isogenic strain of S. flexneri that was defective in invasion owing to a mutation in its spa32 gene failed to induce such phosphorylation. Under in vitro and in vivo conditions, the released IpaB, IpaC, and IpaD proteins bound to alpha 5 beta 1 integrin in a manner different from that of soluble fibronectin but similar to that of the tissue form of fibronectin. At the site of attachment of S. flexneri to CHO cells, alpha5beta1 integrin converged with polymerization of actin. These data thus suggest that the capacity of Ipa proteins to interact with alpha5beta1 integrin may be an important Shigella factor in triggering the reorganization of actin cytoskeletons.


Author(s):  
James D. Budge ◽  
Robert J. Young ◽  
Christopher Mark Smales

Transient gene expression (TGE) in mammalian cells is a method of rapidly generating recombinant protein material for initial characterisation studies that does not require time-consuming processes associated with stable cell line construction. High TGE yields are heavily dependent on efficient delivery of plasmid DNA across both the plasma and nuclear membranes. Here, we harness the protein nucleoside diphosphate kinase (NDPK-A) that contains a nuclear localisation signal (NLS) to enhance DNA delivery into the nucleus of CHO cells. We show that co-expression of NDPK-A during transient expression results in improved transfection efficiency in CHO cells, presumably due to enhanced transportation of plasmid DNA into the nucleus via the nuclear pore complex. Furthermore, introduction of the Epstein Barr Nuclear Antigen-1 (EBNA-1), a protein that is capable of inducing extrachromosomal maintenance, when coupled with complementary oriP elements on a transient plasmid, was utilised to reduce the effect of plasmid dilution. Whilst there was attenuated growth upon introduction of the EBNA-1 system into CHO cells, when both NDPK-A nuclear import and EBNA-1 mediated technologies were employed together this resulted in enhanced transient recombinant protein yields superior to those generated using either approach independently, including when expressing the complex SARS-CoV-2 spike (S) glycoprotein.


1990 ◽  
Vol 10 (9) ◽  
pp. 4524-4528
Author(s):  
C G Maki ◽  
D D Rhoads ◽  
J J Diaz ◽  
D J Roufa

A cDNA expression vector encoding Drosophila ribosomal protein S14 was transfected into cultured Chinese hamster ovary (CHO) cells that harbor a recessive RPS14 emetine resistance mutation. Transformants synthesized the insect mRNA and polypeptide and consequently displayed an emetine-sensitive phenotype. These observations indicate that the insect protein was accurately expressed and correctly assembled into functional mammalian 40S ribosomal subunits.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 357-362 ◽  
Author(s):  
Juergen Bux ◽  
Karin Kissel ◽  
Christine Hofmann ◽  
Sentot Santoso

The Fcγ receptor IIIb (FcγRIIIb) for the Fc domain of IgG is expressed exclusively on neutrophils. The FcγRIIIb bears allotypic polymorphisms referred to as NA1, NA2, and SH, which are known for their frequent involvement in alloimmune and autoimmune neutropenias as well as in transfusion reactions. The bactericidal capacity of isolated neutrophils is easily activatable, and activation results in self-desintegration, thus preventing storage of neutrophils. As a result, only freshly isolated granulocytes can be used for antibody screening, often making it impossible to use typed panel cells. To provide a readily available source of typed panel cells, we therefore established stable mammalian cells expressing recombinant NA1, NA2, and SH antigens. We isolated mRNA from typed neutrophils and then transcribed it in cDNA. The cDNA that codes for the different forms of the FcγRIIIb was amplified by polymerase chain reaction and was subsequently subcloned into the mammalian expression vector pcDNA3. Chinese hamster ovary (CHO) cells were transfected with allele-specific constructs, and stable cell lines expressing FcγRIIIb were selected by flow cytometry. Because human sera show high background fluorescence with transfectants in flow cytometry, the monoclonal antibody–specific isolation of granulocyte antigens (MAIGA) assay was performed. By MAIGA assay, we tested 14 well-characterized human alloantibodies directed against the antigens NA1, NA2, and SH; 5 FcγRIIIb-specific isoantibodies; and 12 FcγRIIIb-reactive autoantibodies. Except one NA1- and one SH-specific alloantibody, all other antibodies could be identified by the use of CHO transfectants. In contrast to neutrophils, fixed CHO cells can be stored at 4°C for at least 4 weeks or stored frozen for a longer period. This longer shelf life of the transfected CHO cells compared with isolated neutrophils will simplify the detection of the clinically most important FcγRIIIb-reactive alloantibodies and autoantibodies.


Sign in / Sign up

Export Citation Format

Share Document