PUMA1: a novel protein that associates with the centrosomes, spindle and centromeres in the nematode Parascaris

1998 ◽  
Vol 111 (6) ◽  
pp. 723-735
Author(s):  
M.R. Esteban ◽  
G. Giovinazzo ◽  
A. de la Hera ◽  
C. Goday

We have identified a 227 kDa spindle- and centromere-associated protein in Parascaris, designated PUMA1 (Parascaris univalens mitotic apparatus), using a monoclonal antibody (mAb403) generated against Parascaris embryonic extracts. PUMA1 distribution was studied by immunofluorescence microscopy in mitotic and meiotic Parascaris cells, where centromere organization differs greatly. In mitosis, PUMA1 associates throughout cell division with the centrosomes and kinetochore-microtubules, and it concentrates at the continuous centromere region of the holocentric chromosomes. PUMA1 also localizes to the spindle mid-zone region during anaphase and at the midbody during telophase. In meiosis, PUMA1 associates with the centrosomes and with the discrete centromeric regions lacking kinetochore structures. The analysis of colchicine-treated embryos indicated that the association of PUMA1 with the centromeric region depends on microtubule integrity. mAb403 also recognizes spindle components in Drosophila. A series of overlapping cDNAs encoding the gene were isolated from a Parascaris embryonic expression library. Analysis of the nucleotide sequence identified an open reading frame capable of encoding a protein of 227 kDa. Analysis of the protein sequence indicated that PUMA1 is predicted to be a coiled-coil protein containing a large central alpha-helical domain flanked by nonhelical terminal domains. The structural features and cellular distribution of PUMA1 suggest that it may play a role in the organization of the spindle apparatus and in its interaction with the centromere in Parascaris.

1992 ◽  
Vol 116 (6) ◽  
pp. 1303-1317 ◽  
Author(s):  
C H Yang ◽  
E J Lambie ◽  
M Snyder

A bank of 892 autoimmune sera was screened by indirect immunofluorescence on mammalian cells. Six sera were identified that recognize an antigen(s) with a cell cycle-dependent localization pattern. In interphase cells, the antibodies stained the nucleus and in mitotic cells the spindle apparatus was recognized. Immunological criteria indicate that the antigen recognized by at least one of these sera corresponds to a previously identified protein called the nuclear mitotic apparatus protein (NuMA). A cDNA which partially encodes NuMA was cloned from a lambda gt11 human placental cDNA expression library, and overlapping cDNA clones that encode the entire gene were isolated. DNA sequence analysis of the clones has identified a long open reading frame capable of encoding a protein of 238 kD. Analysis of the predicted protein sequence suggests that NuMA contains an unusually large central alpha-helical domain of 1,485 amino acids flanked by nonhelical terminal domains. The central domain is similar to coiled-coil regions in structural proteins such as myosin heavy chains, cytokeratins, and nuclear lamins which are capable of forming filaments. Double immunofluorescence experiments performed with anti-NuMA and antilamin antibodies indicate that NuMA dissociates from condensing chromosomes during early prophase, before the complete disintegration of the nuclear lamina. As mitosis progresses, NuMA reassociates with telophase chromosomes very early during nuclear reformation, before substantial accumulation of lamins on chromosomal surfaces is evident. These results indicate that the NuMA proteins may be a structural component of the nucleus and may be involved in the early steps of nuclear reformation during telophase.


2012 ◽  
Vol 6 ◽  
pp. BBI.S9902 ◽  
Author(s):  
Divya P. Syamaladevi ◽  
Margaret S Sunitha ◽  
S. Kalaimathy ◽  
Chandrashekar C. Reddy ◽  
Mohammed Iftekhar ◽  
...  

Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms ( Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from http://caps.ncbs.res.in/myosinome .


1995 ◽  
Vol 73 (S1) ◽  
pp. 364-368 ◽  
Author(s):  
Takashi Kamada ◽  
Shigeru Tanabe

Coprinus cinereus exhibits conspicuous nuclear movement and precise nuclear positioning during its life cycle. Examples include transhyphal migration of nuclei in compatible mating giving rise to a dikaryon, nuclear positioning relative to the hyphal apex in the dikaryon, the close spacing in interphase and conjugate division of the two nuclei in the dikaryon, and the migration of nuclei from the basidium into developing spores. We have investigated the roles of the cytoskeleton in these processes using cytoskeleton mutants as well as fluorescence microscopy. Some of the α1- and β1-tubulin mutations examined blocked nuclear migration in dikaryosis and disturbed nuclear pairing in the dikaryon, demonstrating that microtubules are involved in these processes. The same mutations, however, did not affect the positioning of nuclei in interphase nor in conjugate division in the dikaryon, nor the migration of nuclei into the developing spores. Immunofluorescence microscopy revealed that these mutations inhibit the formation of asters of the mitotic apparatus in conjugate division, providing evidence against direct involvement of astral microtubules in nuclear movement during conjugate division. Actin was concentrated in hyphal regions where the nuclei sit in early phases of conjugate division, suggesting the involvement of actin in conjugate division. Key words: Coprinus cinereus, dikaryon, nuclear movement, microtubules, aster, actin.


2007 ◽  
Vol 81 (22) ◽  
pp. 12210-12217 ◽  
Author(s):  
Greg Brennan ◽  
Yury Kozyrev ◽  
Toshiaki Kodama ◽  
Shiu-Lok Hu

ABSTRACT The TRIM5 family of proteins contains a RING domain, one or two B boxes, and a coiled-coil domain. The TRIM5α isoform also encodes a C-terminal B30.2(SPRY) domain, differences within which define the breadth and potency of TRIM5α-mediated retroviral restriction. Because Macaca nemestrina animals are susceptible to some human immunodeficiency virus (HIV) isolates, we sought to determine if differences exist in the TRIM5 gene and transcripts of these animals. We identified a two-nucleotide deletion (Δ2) in the transcript at the 5′ terminus of exon 7 in all M. nemestrina TRIM5 cDNA clones examined. This frameshift results in a truncated protein of 300 amino acids lacking the B30.2(SPRY) domain, which we have named TRIM5θ. This deletion is likely due to a single nucleotide polymorphism that alters the 3′ splice site between intron 6 and exon 7. In some clones, a deletion of the entire 27-nucleotide exon 7 (Δexon7) resulted in the restoration of the TRIM5 open reading frame and the generation of another novel isoform, TRIM5η. There are 18 amino acid differences between M. nemestrina TRIM5η and Macaca mulatta TRIM5α, some of which are at or near locations previously shown to affect the breadth and potency of TRIM5α-mediated restriction. Infectivity assays performed on permissive CrFK cells stably transduced with TRIM5η or TRIM5θ show that these isoforms are incapable of restricting either HIV type 1 (HIV-1) or simian immunodeficiency virus infection. The expression of TRIM5 alleles incapable of restricting HIV-1 infection may contribute to the previously reported increased susceptibility of M. nemestrina to HIV-1 infection in vivo.


2020 ◽  
Vol 21 (10) ◽  
pp. 3584 ◽  
Author(s):  
Won Min Park

Coiled-coils, the bundles of intertwined helical protein motifs, have drawn much attention as versatile molecular toolkits. Because of programmable interaction specificity and affinity as well as well-established sequence-to-structure relationships, coiled-coils have been used as subunits that self-assemble various molecular complexes in a range of fields. In this review, I describe recent advances in the field of protein nanotechnology, with a focus on programming assembly of protein nanostructures using coiled-coil modules. Modular design approaches to converting the helical motifs into self-assembling building blocks are described, followed by a discussion on the molecular basis and principles underlying the modular designs. This review also provides a summary of recently developed nanostructures with a variety of structural features, which are in categories of unbounded nanostructures, discrete nanoparticles, and well-defined origami nanostructures. Challenges existing in current design strategies, as well as desired improvements for controls over material properties and functionalities for applications, are also provided.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1435-1442 ◽  
Author(s):  
Edward M. Conway ◽  
Saskia Pollefeyt ◽  
Jan Cornelissen ◽  
Inky DeBaere ◽  
Marta Steiner-Mosonyi ◽  
...  

Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is believed to play a role in oncogenesis. To elucidate further its physiologic role(s), we have characterized the murinesurvivin gene and complementary DNA (cDNA). The structural organization of the survivin gene, located on chromosome 11E2, is similar to that of its human counterpart, both containing 4 exons. Surprisingly, 3 full-length murine survivin cDNA clones were isolated, predicting the existence of 3 distinct survivin proteins. The longest open reading frame, derived from all 4 exons, predicts a 140-amino acid residue protein, survivin140, similar to human survivin, which contains a single IAP repeat and a COOH-terminal coiled-coil domain that links its function to the cell cycle. A second cDNA, which retains intron 3, predicts the existence of a 121-amino acid protein, survivin121 that lacks the coiled-coil domain. Removal of exon 2-derived sequences by alternative pre-messenger RNA (mRNA) splicing results in a third 40-amino acid residue protein, survivin40, lacking the IAP repeat and coiled-coil structure. Predictably, only recombinant survivin140 and survivin121 inhibited caspase-3 activity. All 3 mRNA species were variably expressed during development from 7.5 days postcoitum. Of the adult tissues surveyed, thymus and testis accumulated high levels of survivin140 mRNA, whereas survivin121-specific transcripts were detected in all tissues, while those representing survivin40 were absent. Human counterparts to the 3 survivin mRNA transcripts were identified in a study of human cells and tissues. The presence of distinct isoforms of survivin that are expressed differentially suggests that survivin plays a complex role in regulating apoptosis.


2007 ◽  
Vol 81 (8) ◽  
pp. 4264-4271 ◽  
Author(s):  
Mark A. Yondola ◽  
Patrick Hearing

ABSTRACT One of the most interesting functions attributed to the adenovirus early region 4 open reading frame 3 (E4 ORF3) protein is its reorganization of promyelocytic leukemia (PML) protein nuclear bodies. These normally punctate structures are reorganized by E4 ORF3 into tracks that eventually surround viral replication centers. PML rearrangement is an evolutionarily conserved function of E4 ORF3, yet its cause and functional relevance remain mysteries. The E4 ORF3 protein coimmunoprecipitates with the PML protein, yet E4 ORF3 still forms tracks in cells that lack PML. The PML protein is a member of a larger protein family termed tripartite motif (TRIM) proteins. TRIM proteins contain a tripartite domain structure in proximity to their N termini that consists of a RING finger domain, followed by one or two B box domains and a C-terminal coiled-coil domain (collectively termed the RBCC domain). The order and spacing of these domains are evolutionarily conserved and thought to mediate protein-protein interactions and other functions. We implemented a proteomic approach to isolate cellular proteins that bind to E4 ORF3. We identified a novel interaction between E4 ORF3 and another TRIM family member, transcriptional intermediary factor 1 alpha (TIF1α). TIF1α functions by recruiting coactivators and/or corepressors to modulate transcription. The interaction between E4 ORF3 and TIF1α was validated by coimmunoprecipitation and binding of recombinant proteins. Indirect immunofluorescence assays demonstrated that TIF1α is reorganized into track structures that contain PML upon E4 ORF3 expression. The RBCC domain of TIF1α is sufficient for E4 ORF3-induced rearrangement, and TIF1α reorganization is conserved across adenovirus serotypes.


2020 ◽  
Vol 26 (6) ◽  
pp. 490-504
Author(s):  
Yaxin Guo ◽  
Ying Xu ◽  
Dan Xiong ◽  
Yingying Zhou ◽  
Xilong Kang ◽  
...  

TNF receptor-associated factor 6 (TRAF6) is a signal transducer, which plays a pivotal role in triggering a variety of signalling cascades. Here, we cloned and identified the TRAF6 gene from the King pigeon. The open reading frame sequence of pigeon TRAF6 (piTRAF6) is 1638 bp long and encodes a 545 aa protein, including a low-complexity domain, RING finger, Zinc finger, coiled coil domain, and meprin and TRAF homology domain. The aa sequence of piTRAF6 shared a strong identity with that of other birds. PiTRAF6 transcripts were broadly expressed in all the tested tissues; piTRAF6 levels were the highest and lowest in the heart and stomach, respectively. Overexpression of piTRAF6 activated NF-κB in a dose-dependent manner and induced IFN-β expression. Upon piTRAF6 knockdown by small interfering RNAs, NF-κB activation was markedly inhibited in HEK293T cells. The expression of piTRAF6, as well as pro-inflammatory cytokines and antiviral molecules, were obviously increased after TLR ligand stimulation and Newcastle disease virus or Salmonella Pullorum inoculation. These results suggest that piTRAF6 may play a key immunoregulatory role in the innate immune response against viral and bacterial infections.


1992 ◽  
Vol 287 (2) ◽  
pp. 639-643 ◽  
Author(s):  
M S Reddy ◽  
L A Bobek ◽  
G G Haraszthy ◽  
A R Biesbrock ◽  
M J Levine

The low-molecular-mass human salivary mucin has at least two isoforms, MG2a and MG2b, that differ primarily in their sialic acid and fucose content. In this study, we characterize further these isoforms, particularly their peptide moieties. Trypsin digests of MG2a and MG2b yielded high- and low-molecular-mass glycopeptides following gel filtration on Sephacryl S-300. The larger glycopeptides from MG2a and MG2b had similar amino acid compositions and identical N-terminal sequences, suggesting common structural features between their peptides. An oligonucleotide probe generated from the amino acid sequence of the smaller glycopeptide from MG2a was employed in Northern-blot analysis. This probe specifically hybridized to two mRNA species from human submandibular and sublingual glands. A cDNA clone selected from a human submandibular gland cDNA expression library with antibody generated against deglycosylated MG2a also hybridized to these two mRNA species. In both cases, the larger mRNA was polydisperse, and the hybridization signal was more intense in the sublingual gland. In addition, the N-terminal amino acid sequence of the larger glycopeptide was found to be part of one of the selected MG2 cDNA clones.


Sign in / Sign up

Export Citation Format

Share Document