Polyglutamylation and polyglycylation of alpha- and beta-tubulins during in vitro ciliated cell differentiation of human respiratory epithelial cells

1999 ◽  
Vol 112 (23) ◽  
pp. 4357-4366 ◽  
Author(s):  
K. Million ◽  
J. Larcher ◽  
J. Laoukili ◽  
D. Bourguignon ◽  
F. Marano ◽  
...  

Tubulins are the major proteins within centriolar and axonemal structures. In all cell types studied so far, numerous alpha- and beta-tubulin isoforms are generated both by expression of a multigenic family and various post-translational modifications. We have developed a primary culture of human nasal epithelial cells where the ciliated cell differentiation process has been observed and quantified. We have used this system to study several properties concerning polyglutamylation and polyglycylation of tubulin. GT335, a monoclonal antibody directed against glutamylated tubulins, stained the centriole/basal bodies and the axonemes of ciliated cells, and the centrioles of non-ciliated cells. By contrast, axonemal but not centriolar tubulins were polyglycylated. Several polyglutamylated and polyglycylated tubulin isotypes were detected by two-dimensional electrophoresis, using GT335 and a specific monoclonal antibody (TAP952) directed against short polyglycyl chains. Immunoelectron microscopy experiments revealed that polyglycylation only affected axonemal tubulin. Using the same technical approach, polyglutamylation was shown to be an early event in the centriole assembly process, as gold particles were detected in fibrogranular material corresponding to the first cytoplasmic structures involved in centriologenesis. In a functional assay, GT335 and TAP952 had a dose-dependent inhibitory effect on ciliary beat frequency. TAP952 had only a weak effect while GT335 treatment led to a total arrest of beating. These results strongly suggest that in human ciliated epithelial cells, tubulin polyglycylation has only a structural role in cilia axonemes, while polyglutamylation may have a function both in centriole assembly and in cilia activity.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 722
Author(s):  
Maobi Zhu ◽  
Sen Takeda ◽  
Tomohiko Iwano

Phytoestrogens are herbal polyphenolic compounds that exert various estrogen-like effects in animals and can be taken in easily from a foodstuff in daily life. The fallopian tube lumen, where transportation of the oocyte occurs, is lined with secretory cells and multi-ciliated epithelial cells. Recently, we showed that estrogen induces multi-ciliogenesis in the porcine fallopian tube epithelial cells (FTECs) through the activation of the estrogen receptor beta (ERβ) pathway and simultaneous inhibition of the Notch pathway. Thus, ingested phytoestrogens may induce FTEC ciliogenesis and thereby affect the fecundity. To address this issue, we added isoflavones (genistein, daidzein, or glycitin) and coumestan (coumestrol) to primary culture FTECs under air–liquid interface conditions and assessed the effects of each compound. All phytoestrogens except glycitin induced multi-ciliated cell differentiation, which followed Notch signal downregulation. On the contrary, the differentiation of secretory cells decreased slightly. Furthermore, genistein and daidzein had a slight effect on the proportion of proliferating cells exhibited by Ki67 expression. Ciliated-cell differentiation is inhibited by the ERβ antagonist, PHTPP. Thus, this study suggests that phytoestrogens can improve the fallopian tube epithelial sheet homeostasis by facilitating the genesis of multi-ciliated cells and this effect depends on the ERβ-mediated pathway.


2000 ◽  
Vol 109 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Satoko Usui ◽  
Takeshi Shimizu ◽  
Kenichiro Fujita ◽  
Chikako Kishioka ◽  
Yasuo Sakakura

We have developed an air-liquid interface culture system for human nasal epithelial cells that differentiate into mucociliary phenotypes in a defined serum-free medium. Dissociated cells obtained from nasal polyps were cultured on a collagen gel substrate. At confluence, the cells lost characteristics of differentiated cells, and secretory cell and ciliated cell differentiation appeared after 7 days in an air-liquid interface. After 21 days, about half of the epithelial cells were stained with Alcian blue—periodic acid—Schiff stain or monoclonal antibody HCS18, which was directed against human nasal mucin specific for epithelial secretory (goblet) cells. The quantitative examination using the antibody HCS 18 revealed that the antibody-reactive nasal mucin was secreted only on the apical side of the cultures, and interleukin-1 β and tumor necrosis factor α stimulated these mucus secretions. The culture system with an antimucin monoclonal antibody developed in this study should be useful for studying polarized mucus secretion from human nasal epithelial cells.


2001 ◽  
Vol 280 (6) ◽  
pp. C1485-C1497 ◽  
Author(s):  
Diane M. Morse ◽  
Jennifer L. Smullen ◽  
C. William Davis

The purinergic regulation of ciliary activity was studied using small, continuously superfused explants of human nasal epithelium. The P2Y2 purinoceptor (P2Y2-R) was identified as the major purinoceptor regulating ciliary beat frequency (CBF); UTP (EC50 = 4.7 μM), ATP, and adenosine-5′- O-(3-thiotriphosphate) elicited similar maximal responses, approximately twofold over baseline. ATP, however, elicited a post-peak sustained plateau in CBF (1.83 ± 0.1-fold), whereas the post-peak CBF response to UTP declined over 15 min to a low-level plateau (1.36 ± 0.16-fold). UDP also stimulated ciliary beating, probably via P2Y6-R, with a maximal effect approximately one-half that elicited by P2Y2-R stimulation. Not indicated were P2Y1-R-, P2Y4-R-, or P2Y11-R-mediated effects. A2B-receptor agonists elicited sustained responses in CBF approximately equal to those from UTP/ATP [5′-( N-ethylcarboxamido)adenosine, EC50 = 0.09 μM; adenosine, EC50 = 0.7 μM]. Surprisingly, ADP elicited a sustained stimulation in CBF. The ADP effect and the post-peak sustained portion of the ATP response in CBF were inhibited by the A2-R antagonist 8-( p-sulfophenyl)theophylline. Hence, ATP affects ciliary activity through P2Y2-R and, after an apparent ectohydrolysis to adenosine, through A2BAR.


2014 ◽  
Vol 272 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Richard Birk ◽  
C. Aderhold ◽  
J. Stern-Sträter ◽  
K. Hörmann ◽  
B. A. Stuck ◽  
...  

2000 ◽  
Vol 279 (3) ◽  
pp. C658-C669 ◽  
Author(s):  
Bernardo Morales ◽  
Nelson Barrera ◽  
Pablo Uribe ◽  
Claudio Mora ◽  
Manuel Villalón

The presence of ATP and adenosine receptors and their role in controlling ciliary activity in oviductal ciliated cells was studied by measuring the ciliary beat frequency (CBF) in oviductal tissue cultures. ATP, adenosine, and related compounds increased the CBF in a dose-dependent manner. We established that P2 receptors of subtype 2Y2 and P1 receptors of subtype A2a mediated the responses to ATP and adenosine, respectively. We found evidence to suggest that stimulation of ciliary activity by ATP requires d- myo-inositol 1,4,5-trisphosphate [Ins(1,4,5) P 3] metabolism, intracellular Ca2+ mobilization, and protein kinase C activation. On the other hand, the adenosine effect is mediated by activation of a Gs protein-dependent pathway that enhances cAMP intracellular levels. To study the interaction between P2 and P1 receptors, cells were stimulated simultaneously with both agonists. We observed a synergistic increase of the CBF even at agonist concentrations (100 nM) that did not produce a significant response when added separately to the culture. Furthermore, a blocker of the cAMP pathway produced a reduction of the ATP response, whereas a blocker of the Ins(1,4,5) P 3 pathway also produced an inhibition of the adenosine response. Our evidence demonstrates that both ATP and adenosine receptors are present in a single ciliated cell and that a mechanism of cross talk could operate in the transduction pathways to control ciliary activity.


2004 ◽  
Vol 286 (4) ◽  
pp. L650-L657 ◽  
Author(s):  
Yingjian You ◽  
Tao Huang ◽  
Edward J. Richer ◽  
Jens-Erik Harboe Schmidt ◽  
Joseph Zabner ◽  
...  

Factors required for commitment of an undifferentiated airway epithelial cell to a ciliated cell are unknown. Cell ultrastructure analysis indicates ciliated cell commitment activates a multistage program involving synthesis of cilia precursor proteins and assembly of macromolecular complexes. Foxj1 is an f-box transcription factor expressed in ciliated cells and shown to be required for cilia formation by gene deletion in a mouse model. To identify a specific role for foxj1 in directing the ciliated cell phenotype, we evaluated the capacity of foxj1 to induce ciliogenesis and direct cilia assembly. In a primary culture model of wild-type mouse airway epithelial cells, foxj1 expression preceded the appearance of cilia and in cultured foxj1 null cells cilia did not develop. Delivery of foxj1 to polarized epithelial cell lines and primary cultured alveolar epithelial cells failed to promote ciliogenesis. Similarly, delivery of foxj1 to wild-type airway epithelial cells did not enhance the total number of ciliated cells. In contrast, delivery of foxj1 to null cells resulted in the appearance of cilia. Analysis revealed that, in the absence of foxj1, null cells contained cilia precursor basal bodies, indicating prior commitment to ciliogenesis. However, the basal bodies were disorganized within the apical compartment and failed to dock with the apical membrane. Reconstitution of foxj1 in null cells restored normal basal body organization, resulting in axoneme growth. Thus foxj1 functions in late-stage ciliogenesis to regulate programs promoting basal body docking and axoneme formation in cells previously committed to the ciliated cell phenotype.


2021 ◽  
Vol 4 (5) ◽  
pp. e202000981
Author(s):  
Anatoly Mikhailik ◽  
Tatyana V Michurina ◽  
Krikor Dikranian ◽  
Stephen Hearn ◽  
Vladimir I Maxakov ◽  
...  

Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies.


2020 ◽  
Vol 21 (11) ◽  
pp. 4052
Author(s):  
Makoto Yasuda ◽  
Taka-aki Inui ◽  
Shigeru Hirano ◽  
Shinji Asano ◽  
Tomonori Okazaki ◽  
...  

Small inhaled particles, which are entrapped by the mucous layer that is maintained by mucous secretion via mucin exocytosis and fluid secretion, are removed from the nasal cavity by beating cilia. The functional activities of beating cilia are assessed by their frequency and the amplitude. Nasal ciliary beating is controlled by intracellular ions (Ca2+, H+ and Cl−), and is enhanced by a decreased concentration of intracellular Cl− ([Cl−]i) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which increases the ciliary beat amplitude. A novel method to measure both ciliary beat frequency (CBF) and ciliary beat distance (CBD, an index of ciliary beat amplitude) in cHNECs has been developed using high-speed video microscopy, which revealed that a decrease in [Cl−]i increased CBD, but not CBF, and an increase in [Cl−]i decreased both CBD and CBF. Thus, [Cl−]i inhibits ciliary beating in cHNECs, suggesting that axonemal structures controlling CBD and CBF may have Cl− sensors and be regulated by [Cl−]i. These observations indicate that the activation of Cl− secretion stimulates ciliary beating (increased CBD) mediated via a decrease in [Cl−]i in cHNECs. Thus, [Cl−]i is critical for controlling ciliary beating in cHNECs. This review introduces the concept of Cl− regulation of ciliary beating in cHNECs.


2018 ◽  
Vol 19 (12) ◽  
pp. 3754 ◽  
Author(s):  
Taka-aki Inui ◽  
Makoto Yasuda ◽  
Shigeru Hirano ◽  
Yukiko Ikeuchi ◽  
Haruka Kogiso ◽  
...  

The effects of the isoflavone daidzein on the ciliary beat distance (CBD, which is a parameter assessing the amplitude of ciliary beating) and the ciliary beat frequency (CBF) were examined in ciliated human nasal epithelial cells (cHNECs) in primary culture. Daidzein decreased [Cl−]i and enhanced CBD in cHNECs. The CBD increase that was stimulated by daidzein was mimicked by Cl−-free NO3− solution and bumetanide (an inhibitor of Na+/K+/2Cl− cotransport), both of which decreased [Cl−]i. Moreover, the CBD increase was inhibited by 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl− channel blocker), which increased [Cl−]i. CBF was also decreased by NPPB. The rate of [Cl−]i decrease evoked by Cl−-free NO3− solution was enhanced by daidzein. These results suggest that daidzein activates Cl− channels in cHNECs. Moreover, daidzein enhanced the microbead transport driven by beating cilia in the cell sheet of cHNECs, suggesting that an increase in CBD enhances ciliary transport. An [Cl−]i decrease enhanced CBD, but not CBF, in cHNECs at 37 °C, although it enhanced both at 25 °C. Intracellular Cl− affects both CBD and CBF in a temperature-dependent manner. In conclusion, daidzein, which activates Cl− channels to decrease [Cl−]i, stimulated CBD increase in cHNECs at 37 °C. CBD is a crucial factor that can increase ciliary transport in the airways under physiological conditions.


Sign in / Sign up

Export Citation Format

Share Document