The Ku70 autoantigen interacts with p40phox in B lymphocytes

1999 ◽  
Vol 112 (4) ◽  
pp. 503-513
Author(s):  
N. Grandvaux ◽  
S. Grizot ◽  
P.V. Vignais ◽  
M.C. Dagher

Ku70, a regulatory component of the DNA-dependent protein kinase, was identified by a yeast two-hybrid screen of a B lymphocyte cDNA library as a partner of p40phox, a regulatory component of the O2--producing NADPH oxidase. Truncated constructs of p40phox and Ku70 were used to map the interacting sites. The 186 C-terminal amino acids (aa) of Ku70 were found to interact with two distinct regions of p40phox, the central core region (aa 50–260) and the C-terminal extremity (aa 260–339). In complementary experiments, it was observed that Ku70 binds to immobilized recombinant p40phox fusion protein and that p40phox and Ku70 from a B lymphocyte cell extract comigrate in successive chromatographies on Q Separose, Superose 12 and hydroxylapatite columns. Moreover, we report that Ku70 and p40phox colocalize in B lymphocytes and in transfected Cos-7 cells. We also show that the two NADPH oxidase activating factors, p47phox and p67phox are substrates for DNA-PK in vitro and that they are present together with p40phox in the nucleus of B cells. These results may help solve the paradox that the phox protein triad, p40phox, p47phox and p67phox, is expressed equally in B lymphocytes and neutrophils, whereas the redox component of the NADPH oxidase, a flavocytochrome b, which is well expressed in neutrophils, is barely detectable in B lymphocytes.

1981 ◽  
Vol 153 (4) ◽  
pp. 871-882 ◽  
Author(s):  
H Y Tse ◽  
J J Mond ◽  
W E Paul

For the purpose of examining more closely the interaction between T and B lymphocytes, we have developed an in vitro T lymphocyte-dependent B lymphocyte proliferation assay. Proliferation of B lymphocytes in response to antigen was found to depend on the presence of primed T lymphocytes; the B lymphocytes could be derived from nonprimed animals. It appears that these B cells were nonspecifically recruited to proliferate. This nonspecific recruitment, however, was found to be Ir-gene restricted in that B lymphocytes from B10.S mice, which are genetic nonresponders to the polymer Glu60-Ala30-Tyr10 (GAT), could not be stimulated by GAT-primed (responder X nonresponder) F1 T cells. The apparent lack of antigen specificity in the face of Ir gene-restricted T-B interaction may have important implications in our understanding of the recognition unit(s) on T lymphocytes.


1992 ◽  
Vol 12 (2) ◽  
pp. 518-530
Author(s):  
R Palacios ◽  
J Samaridis

We describe here the development and characterization of the FLS4.1 stromal line derived from 15-day fetal liver of BALB/c embryos and defined culture conditions that efficiently support the cloning and long-term growth of nontransformed B-220+ 14-day fetal liver cells at two stages of B-cell development, namely, pro-B lymphocytes (immunoglobulin [Ig] genes in germ line configuration) and pre-B cells (JH-rearranged genes with both light-chain Ig genes in the germ line state). All B-cell precursor clones require recombinant interleukin-7 (rIL-7) and FLS4.1 stromal cells for continuous growth in culture, but pro-B lymphocyte clones can also proliferate in rIL-3. None proliferate in rIL-1, rIL-2, rIL-4, rIL-5, rIL-6, or leukemia inhibitory factor. FLS4.1 stromal cells synthesize mRNA for Steel factor but not for IL-1 to IL-7; all pro-B and pre-B clones express c-Kit, the receptor for Steel factor, and a c-Kit-specific antibody inhibits the enhanced proliferative response of fetal liver B-220+ B-cell precursors supported by FLS4.1 stromal cells and exogenous rIL-7 but does not affect that promoted by rIL-7 alone. Northern (RNA) blot analysis of the expression of the MB-1, lambda 5, Vpre-B, c mu, RAG-1, and RAG-2 genes in pro-B and pre-B clones show that transcription of the MB-1 gene precedes IgH gene rearrangement and RNA synthesis from c mu, RAG-1, RAG-2, lambda 5, and Vpre-B genes. All clones at the pre-B-cell stage synthesize mRNA for c mu, RAG-1, and RAG-2 genes; transcription of the lambda 5 and Vpre-B genes seems to start after D-to-JH rearrangement in B-cell precursors, indicating that the proteins encoded by either gene are not required for B-cell progenitors to undergo D-to-JH gene rearrangement. These findings mark transcription of the MB-1 gene as one of the earliest molecular events in commitment to develop along the B-lymphocyte pathway. Indeed, both pro-B and pre-B clones can generate in vitro and in vivo B lymphocytes but not T lymphocytes; moreover, these clones do not express the CD3-gamma T-cell-specific gene, nor do they have rearranged gamma, delta, or beta T-cell antigen receptor genes.


1989 ◽  
Vol 84 (1) ◽  
pp. 236-243 ◽  
Author(s):  
S S Sung ◽  
L K Jung ◽  
J A Walters ◽  
E W Jeffes ◽  
G A Granger ◽  
...  

Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517 ◽  
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

Abstract A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


1998 ◽  
Vol 187 (5) ◽  
pp. 753-762 ◽  
Author(s):  
Conrad C. Bleul ◽  
Joachim L. Schultze ◽  
Timothy A. Springer

Migration of mature B lymphocytes within secondary lymphoid organs and recirculation between these sites are thought to allow B cells to obtain T cell help, to undergo somatic hypermutation, to differentiate into effector cells, and to home to sites of antibody production. The mechanisms that direct migration of B lymphocytes are unknown, but there is evidence that G protein–coupled receptors, and possibly chemokine receptors, may be involved. Stromal cell– derived factor (SDF)-1α is a CXC chemokine previously characterized as an efficacious chemoattractant for T lymphocytes and monocytes in peripheral blood. Here we show with purified tonsillar B cells that SDF-1α also attracts naive and memory, but not germinal center (GC) B lymphocytes. Furthermore, GC B cells could be converted to respond to SDF-1α by in vitro differentiation into memory B lymphocytes. Conversely, the migratory response in naive and memory B cells was significantly reduced after B cell receptor engagement and CD40 signaling. The receptor for SDF-1, CXC chemokine receptor 4 (CXCR4), was found to be expressed on responsive as well as unresponsive B cell subsets, but was more rapidly downregulated on responsive cells by ligand. Finally, messenger RNA for SDF-1 was detected by in situ hybridization in a layer of cells surrounding the GC. These findings show that responsiveness to the chemoattractant SDF-1α is regulated during B lymphocyte activation, and correlates with positioning of B lymphocytes within a secondary lymphoid organ.


1976 ◽  
Vol 143 (3) ◽  
pp. 511-528 ◽  
Author(s):  
G J Nossal ◽  
J E Layton

Mouse spleen cells were subjected to a fractionation procedure designed to enrich for 4-hydroxy-3-iodo-5-nitro-phenylacetyl (NIP)- or DNP-specific B lymphocytes, which depended on adherence of specific cells to a layer of hapten-gelatin at 4 degrees C, recovery of bound cells by melting, and digestion of adherent antigen by collagenase. A population of cells resulted which contained 90% typical B cells and 37% of cells capable of binding a fluorescent, haptenated polymeric protein. Fractionated cells were reacted in vitro with fluorescent conjugates of the specific haptens with polymerized flagellin [NIP-polymerized flagellin (POL)-tetramethylrhodamine isothiocyanate conjugate or DNP-POL-fluorescein isothiocyanate conjugate] under a variety of conditions, with the aim of investigating the behavior of Ig receptors on B lymphocytes after exposure to antigen; Experiments were performed with immunogenic and tolerogenic concentrations of antigen. Furthermore, four experimental designs were used, namely: (a) brief labeling with fluorescent antigen followed by culture without antigen (pulse design); (b) culture in the continuous presence of fluorescent antigen (continuous-labeling design); (c) culture in the continuous presence of nonlabeled antigen followed by labeling of unoccupied receptors by fluorescent antigen (receptor status design); and (d) culture with nonlabeled antigen for 2 h followed by incubation without further antigen for 20 h and labeling with fluorescent antigen (modulation design). Further insight into receptor occupancy and distribution was gained by the use of fluorescent antihapten and antiglobulin reagents. It was found that both immunogenic and tolerogenic antigen concentrations caused rapid patching and capping of the receptors to which they attached, followed by endocytosis and probably some shedding of Ig receptors. However, a proportion of cells continued to bear some cell surface antigen for 24 h. The immunogenic antigen concentration failed to completely remove the receptor coat from the cell surface. At all stages of immunogenesis, plentiful unoccupied receptors could be demonstrated. The tolerogenic concentration nearly saturated available receptors, and in its continuous presence, only few unoccupied or antigen-occupied surface receptors could be detected after 24 h of culture. Experiments of the modulation design showed that brief incubation with the tolerogenic concentration appeared to suppress receptor resynthesis, as few new receptors could be demonstrated after 20 h of further culture without antigen. Experiments were performed to determine whether fractionated cells prepared from spleens of 8-day-old mice showed an unusual tendency for modulation, even with immunogenic antigen concentrations. They were found to behave essentially like adult fractionated cells. The results are discussed in the framework of current theories of B-lymphocyte activation and tolerization.


1996 ◽  
Vol 317 (3) ◽  
pp. 919-924 ◽  
Author(s):  
Frans B. WIENTJES ◽  
George PANAYOTOU ◽  
Emer REEVES ◽  
Anthony W. SEGAL

The NADPH oxidase of neutrophils and other bone-marrow-derived phagocytic cells is a multi-component system consisting of a flavocytochrome b in the plasma membrane and at least four cytosolic proteins. Three of the cytosolic proteins contain src homology 3 (SH3) domains, two each in p47phox and p67phox, and one in p40phox. All three translocate from the cytosol to the flavocytochrome in the membrane upon stimulation of the cells. A small G-protein, p21rac, is also involved in activation of the oxidase. The three cytosolic phox proteins occur as a complex in the cytosol and the strongest interaction appeared to be between p67phox and p40phox. We have investigated the interaction between p40phox and the other two cytosolic phox proteins by in vitro binding assays. An affinity-bead approach was used as well as a biosensor technique (surface plasmon resonance). We observed the strongest attachment between p40phox and p67phox where the binding was between the N-terminal half of p67phox and the C-terminal half of p40phox, and did not appear to involve SH3 domains and proline-rich sequences. p40phox also bound p47phox but more weakly than it did p67phox.


1998 ◽  
Vol 18 (12) ◽  
pp. 7304-7316 ◽  
Author(s):  
Patrick R. Romano ◽  
Fan Zhang ◽  
Seng-Lai Tan ◽  
Minerva T. Garcia-Barrio ◽  
Michael G. Katze ◽  
...  

ABSTRACT The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2α (eIF2α). Vaccinia virus E3Lencodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2α, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and λ repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.


1973 ◽  
Vol 137 (6) ◽  
pp. 1405-1418 ◽  
Author(s):  
David H. Katz ◽  
Toshiyuki Hamaoka ◽  
Baruj Benacerraf

Several experimental approaches, designed specifically to circumvent the possible contribution of a complicating "allogeneic effect," have been successfully used to answer the question of physiologic cooperative interactions between histoincompatible T and B lymphocytes in antibody responses to hapten-protein conjugates. This was accomplished for in vivo cell transfer studies by using an F1 hybrid host as the recipient of irradiated, carrier-primed T lymphocytes from one parent and 2,4-dinitrophenyl (DNP)-primed B lymphocytes from the opposite strain. Under these conditions, very good T-B cell cooperative interactions were observed to occur between T and B lymphocyte populations derived from syngeneic donors, whereas no cooperative response was obtained when T cells were derived from one parental strain and B cells from the other. Corroborative experiments were performed in a totally in vitro system in which DNP-primed B cells developed good secondary anti-DNP antibody responses in vitro to soluble DNP-keyhole limpet hemocyanin (KLH) when cultured in the presence of irradiated KLH-primed T cells derived from syngenic donors but not from allogeneic donors. The failure of histoincompatible T and B lymphocytes to effect physiologic cooperative interactions has important implications for our understanding of how such interactions normally occur. The possibility that these results reflect the existence of a "block" of some sort to cell-cell interaction by virtue of the presence of a foreign major histocompatibility antigen on the surface of either cell has been definitively ruled out in the present studies. These observations demonstrate that the gene(s) that conditions the capability for physiologic T-B cell cooperation must be shared in common by the respective cell types, and suggest, furthermore, that this gene (or genes) belongs to the major histocompatibility system of the mouse. These findings, together with other relevant phenomena described previously, have led us to postulate that there exists on the B lymphocyte surface an "acceptor" molecule either for the putative active T cell product or for the T cell itself. The important genetic considerations and the possible sequence of events surrounding the actual T-B cell interaction implied by these postulates are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document