LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity

2000 ◽  
Vol 113 (11) ◽  
pp. 2065-2074 ◽  
Author(s):  
A. Cuvillier ◽  
F. Redon ◽  
J.C. Antoine ◽  
P. Chardin ◽  
T. DeVos ◽  
...  

The small G protein-encoding LdARL-3A gene, a homologue of the human ARL-3 gene, was isolated from Leishmania donovani, and its protein product characterised. It is unique in the Leishmania genome and expressed only in the extracellular promastigote insect form, but not in the intracellular amastigote mammalian form, as shown by northern blots and western blots developed with a specific anti-C terminus immune serum. Indirect immunofluorescence microscopy revealed distinct labelled spots regularly distributed on the plasma membrane, including the part lining the flagellum and the flagellar pocket. By transfection experiments, it was found that wild-type LdARL-3A-overexpressing promastigotes reached higher densities in culture, but released significantly less secreted acid phosphatase in the extracellular medium than the parental strain. When LdARL-3A blocked under the GDP-bound ‘inactive’ form or with an inactivated potential myristoylation site was overexpressed, the cells displayed an apparent wild-type phenotype, but died earlier in the stationary phase; in contrast to parental cells, they showed a diffuse pattern of fluorescence labelling in the cytoplasm and on the cell membrane. Strikingly, when a constitutively ‘active’ form of LdARL-3A (blocked under the GTP-bound form) was overexpressed, the promastigotes were immobile with a very short flagellum, a slow growth rate and a low level of acid phosphatase secretion; the length of the flagellum was inversely proportional to mutant protein expression. We concluded that LdARL-3A could be an essential gene involved in flagellum biogenesis; it may provide new approaches for control of the parasite at the insect stage.

Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 359-374 ◽  
Author(s):  
Neil A Hukriede ◽  
Robert J Fleming

Serrate (Ser) is an essential gene in Drosophila melanogaster best known for the Ser dominant (SerD) allele and its effects on wing development. Animals heterozygous or homozygous for (SerD) are viable and exhibit loss of wing margin tissue and associated bristles and hairs. The Beaded of Goldschmidt (BdG) allele of Ser, when heterozygous to wild type, will also produce animals exhibiting loss of wing margin material. However, animals homozygous for BdG exhibit a larval lethal phenotype comparable to animals homozygous for loss-of-function Ser alleles. BdG is a partial duplication of the Ser locus with a single 5′ Ser-homologous region and two distinct 3′ regions. Meiotic recombination between BdG and a wild-type Ser chromosome demonstrated that only one DNA lesion, caused by the insertion of a transposable roo element into the coding regions of the Ser transcript, appears capable of generating BdG phenotypes. Due to the roo insertion, the protein product is predicted to be prematurely truncated and lack an extracellular cysteine-rich region along with the transmembrane and intracellular domains found within the normal SERRATE (SER) protein. The loss of these protein domains apparently contributes to the antimorphic nature of this mutation.


Genetics ◽  
1995 ◽  
Vol 141 (2) ◽  
pp. 595-606 ◽  
Author(s):  
K K Hill ◽  
V Bedian ◽  
J L Juang ◽  
F M Hoffmann

Abstract Mutations in the failed axon connections (fax) gene have been identified as dominant genetic enhancers of the Abl mutant phenotype. These mutations in fax all result in defective or absent protein product. In a genetic background with wild-type Abl function, the fax loss-of-function alleles are homozygous viable, demonstrating that fax is not an essential gene unless the animal is also mutant for Abl. The fax gene encodes a novel 47-kD protein expressed in a developmental pattern similar to that of Abl in the embryonic mesoderm and axons of the central nervous system. The conditional, extragenic noncomplementation between fax and another Abl modifier gene, disabled, reveal that the two proteins are likely to function together in a process downstream or parallel to the Abl protein tyrosine kinase.


Author(s):  
W.C. de Bruijn ◽  
A.A.W. de Jong ◽  
C.W.J. Sorber

One aspect of enzyme cytochemistry is, whether all macrophage lysosomal hydrolytical enzymes are present in an active form, or are activated upon stimulation. Integrated morphometrical and chemical analysis has been chosen as a tool to illucidate that cytochemical problem. Mouse peritoneal resident macrophages have been used as a model for this complicated integration of morphometrical and element-related data. Only aldehyde-fixed cells were treated with three cytochemical reactions to detect different enzyme activities within one cell (for details see [1,2]). The enzyme-related precipitates anticipated to be differentiated, were:(1).lysosomal barium and sulphur from aryl sulphatase activity,(2).lysosomal cerium and phosphate from acid phosphatase activity and(3).platinum/di-amino-benzidine( D A B) complex from endogenous peroxidase activity.


1976 ◽  
Vol 4 (3-4) ◽  
pp. 207-211
Author(s):  
SHUN SHINBO ◽  
TAKATOSHI KOBAYAKAWA ◽  
HIROSHI ISHIYAMA ◽  
KAZUSHIGE MASUDA

1986 ◽  
Vol 32 (10) ◽  
pp. 1832-1835 ◽  
Author(s):  
P C Patel ◽  
L Aubin ◽  
J Côte

Abstract We investigated two techniques of immunoblotting--the Western blot and the dot blot--for use in detecting prostatic acid phosphatase (PAP, EC 3.1.3.2). We used polyclonal antisera to human PAP, produced in rabbits by hyperimmunization with purified PAP, and PAP-specific monoclonal antibodies in the immunoenzymatic protocols. We conclude that PAP can be readily detected by Western blots with use of polyclonal antisera, but not with monoclonal antibodies. On the other hand, using a dot blot assay, we could easily detect PAP with both polyclonal and monoclonal antibodies.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


2013 ◽  
Vol 304 (5) ◽  
pp. F522-F532 ◽  
Author(s):  
Luca Vedovelli ◽  
John T. Rothermel ◽  
Karin E. Finberg ◽  
Carsten A. Wagner ◽  
Anie Azroyan ◽  
...  

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1−/−) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1−/− and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915–F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1−/− mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1+/+ mice) with Atp6v1b1−/− mice to generate novel EGFP-B1−/− mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1+/+ and EGFP-B1−/− mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1−/− mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.


1986 ◽  
Vol 6 (2) ◽  
pp. 723-729
Author(s):  
R Haguenauer-Tsapis ◽  
M Nagy ◽  
A Ryter

We studied ultrastructural localization of acid phosphatase in derepressed Saccharomyces cerevisiae cells transformed with a multicopy plasmid carrying either the wild-type PHO5 gene or a PHO5 gene deleted in the region overlapping the signal peptidase cleavage site. Wild-type enzyme was located in the cell wall, as was 50% of the modified protein, which carried high-mannose-sugar chains. The remaining 50% of the protein was active and core glycosylated, and it accumulated in the endoplasmic reticulum cisternae. The signal peptide remained uncleaved in both forms. Cells expressing the modified protein exhibited an exaggerated endoplasmic reticulum with dilated lumen.


1994 ◽  
Vol 14 (5) ◽  
pp. 2975-2984
Author(s):  
H Charest ◽  
G Matlashewski

Leishmania protozoans are the causative agents of leishmaniasis, a major parasitic disease in humans. During their life cycle, Leishmania protozoans exist as flagellated promastigotes in the sand fly vector and as nonmotile amastigotes in the mammalian hosts. The promastigote-to-amastigote transformation occurs in the phagolysosomal compartment of the macrophage cell and is a critical step for the establishment of the infection. To study this cytodifferentiation process, we differentially screened an amastigote cDNA library with life cycle stage-specific cDNA probes and isolated seven cDNAs representing amastigote-specific transcripts. Five of these were closely related (A2 series) and recognized, by Northern (RNA) blot analyses, a 3.5-kb transcript in amastigotes and in amastigote-infected macrophages. Expression of the amastigote-specific A2 gene was induced in promastigotes when they were transferred from culture medium at 26 degrees C and pH 7.4 to medium at 37 degrees C and pH 4.5, conditions which mimic the macrophage phagolysosomal environment. A2 genes are clustered in tandem arrays, and a 6-kb fragment corresponding to a unit of the cluster was cloned and partially sequenced. An open reading frame found within the A2-transcribed region potentially encoded a 22-kDa protein containing repetitive sequences. The recombinant A2 protein produced in Escherichia coli cells was specifically recognized by immune serum from a patient with visceral leishmaniasis. The A2 protein repetitive element has strong homology with an S antigen of Plasmodium falciparum, the protozoan parasite responsible for malaria. Both the A2 protein of Leishmania donovani and the S antigen of P. falciparum are stage specific and developmentally expressed in mammalian hosts.


Sign in / Sign up

Export Citation Format

Share Document