Calsequestrin, a calcium sequestering protein localized at the sarcoplasmic reticulum, is not essential for body-wall muscle function in Caenorhabditis elegans

2000 ◽  
Vol 113 (22) ◽  
pp. 3947-3958 ◽  
Author(s):  
J.H. Cho ◽  
Y.S. Oh ◽  
K.W. Park ◽  
J. Yu ◽  
K.Y. Choi ◽  
...  

Calsequestrin is the major calcium-binding protein of cardiac and skeletal muscles whose function is to sequester Ca(2+)in the lumen of the sarcoplasmic reticulum (SR). Here we describe the identification and functional characterization of a C. elegans calsequestrin gene (csq-1). CSQ-1 shows moderate similarity (50% similarity, 30% identity) to rabbit skeletal calsequestrin. Unlike mammals, which have two different genes encoding cardiac and fast-twitch skeletal muscle isoforms, csq-1 is the only calsequestrin gene in the C. elegans genome. We show that csq-1 is highly expressed in the body-wall muscles, beginning in mid-embryogenesis and maintained through the adult stage. In body-wall muscle cells, CSQ-1 is localized to sarcoplasmic membranes surrounding sarcomeric structures, in the regions where ryanodine receptors (UNC-68) are located. Mutation in UNC-68 affects CSQ-1 localization, suggesting that the two possibly interact in vivo. Genetic analyses of chromosomal deficiency mutants deleting csq-1 show that CSQ-1 is not essential for initiation of embryonic muscle formation and contraction. Furthermore, double-stranded RNA injection resulted in animals completely lacking CSQ-1 in body-wall muscles with no observable defects in locomotion. These findings suggest that although CSQ-1 is one of the major calcium-binding proteins in the body-wall muscles of C. elegans, it is not essential for body-wall muscle formation and contraction.

Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 667-681 ◽  
Author(s):  
P.Y. Goh ◽  
T. Bogaert

As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jonathan D. Hibshman ◽  
Bob Goldstein

Abstract Background Cells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematode C. elegans as a model to study the endogenous function of an LEA protein in an animal. Results We created a null mutant of C. elegans LEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed that C. elegans lacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs within C. elegans LEA-1 that were sufficient to increase desiccation survival of E. coli. To test whether such motifs are central to LEA-1’s in vivo functions, we then replaced the sequence of lea-1 with these minimal motifs and found that C. elegans dauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. Conclusions Our results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.


2021 ◽  
Author(s):  
Patricia G. Izquierdo ◽  
Thibana Thisainathan ◽  
James H. Atkins ◽  
Christian J. Lewis ◽  
John E.H. Tattersall ◽  
...  

AbstractComplex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism C. elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. These distinct tissues are controlled by separate, well-defined neural circuits. Nonetheless, the emergent behaviours, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. We show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behaviour. This was evidenced by a systematic screening of the cholinesterase inhibitor aldicarb’s effect on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinant of the inhibitory effect of aldicarb on pharyngeal pumping is the L-type nicotinic acetylcholine receptor expressed in body wall muscle. This idea was reinforced by the observation that selective hyperstimulation of the body wall muscle L-type receptor by the agonist levamisole inhibited pumping. Overall, our results reveal that body wall cholinergic transmission controls locomotion and simultaneously couples a distal inhibition of feeding.


Author(s):  
Ashley A. Martin ◽  
Simon Alford ◽  
Janet E. Richmond

2020 ◽  
Vol 12 (6) ◽  
pp. 150-160 ◽  
Author(s):  
Samuel Sofela ◽  
Sarah Sahloul ◽  
Sukanta Bhattacharjee ◽  
Ambar Bose ◽  
Ushna Usman ◽  
...  

Abstract Type 2 diabetes is the most common metabolic disease, and insulin resistance plays a role in the pathogenesis of the disease. Because completely functional mitochondria are necessary to obtain glucose-stimulated insulin from pancreatic beta cells, dysfunction of mitochondrial oxidative pathway could be involved in the development of diabetes. As a simple animal model, Caenorhabditis elegans renders itself to investigate such metabolic mechanisms because it possesses insulin/insulin-like growth factor-1 signaling pathway similar to that in humans. Currently, the widely spread agarose pad-based immobilization technique for fluorescence imaging of the mitochondria in C. elegans is laborious, batchwise, and does not allow for facile handling of the worm. To overcome these technical challenges, we have developed a single-channel microfluidic device that can trap a C. elegans and allow to image the mitochondria in body wall muscles accurately and in higher throughput than the traditional approach. In specific, our microfluidic device took advantage of the proprioception of the worm to rotate its body in a microfluidic channel with an aspect ratio above one to gain more space for its undulation motion that was favorable for quantitative fluorescence imaging of mitochondria in the body wall muscles. Exploiting this unique feature of the microfluidic chip-based immobilization and fluorescence imaging, we observed a significant decrease in the mitochondrial fluorescence intensity under hyperglycemic conditions, whereas the agarose pad-based approach did not show any significant change under the same conditions. A machine learning model trained with these fluorescence images from the microfluidic device could classify healthy and hyperglycemic worms at high accuracy. Given this significant technological advantage, its easiness of use and low cost, our microfluidic imaging chip could become a useful immobilization tool for quantitative fluorescence imaging of the body wall muscles in C. elegans.


2002 ◽  
Vol 157 (4) ◽  
pp. 665-677 ◽  
Author(s):  
Kenneth R. Norman ◽  
Donald G. Moerman

Acommon feature of multicellular animals is the ubiquitous presence of the spectrin cytoskeleton. Although discovered over 30 yr ago, the function of spectrin in nonerythrocytes has remained elusive. We have found that the spc-1 gene encodes the only α spectrin gene in the Caenorhabditis elegans genome. During embryogenesis, α spectrin localizes to the cell membrane in most if not all cells, starting at the first cell stage. Interestingly, this localization is dependent on β spectrin but not βHeavy spectrin. Furthermore, analysis of spc-1 mutants indicates that β spectrin requires α spectrin to be stably recruited to the cell membrane. Animals lacking functional α spectrin fail to complete embryonic elongation and die just after hatching. These mutant animals have defects in the organization of the hypodermal apical actin cytoskeleton that is required for elongation. In addition, we find that the process of elongation is required for the proper differentiation of the body wall muscle. Specifically, when compared with myofilaments in wild-type animals the myofilaments of the body wall muscle in mutant animals are abnormally oriented relative to the longitudinal axis of the embryo, and the body wall muscle cells do not undergo normal cell shape changes.


2020 ◽  
Author(s):  
Shoichiro Ono ◽  
Kanako Ono

AbstractMulticellular organisms have multiple genes encoding calponins and calponin-related proteins, and some of these are known to regulate actin cytoskeletal dynamics and contractility. However, functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, has an overlapping function with UNC-87 to maintain actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro. CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad, where UNC-87 is also expressed. unc-87 mutation causes cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone causes no detectable phenotypes. However, simultaneous depletion of clik-1 and unc-87 caused sterility due to ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundles actin filaments. However, CLIK-1 binds to actin filaments without bundling them and is antagonistic to UNC-87 in filament bundling. UNC-87 and CLIK-1 share common functions to inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. Thus, partially redundant functions of UNC-87 and CLIK-1 in ovulation is likely mediated by their common actin-regulatory activities, but their distinct activities in actin bundling suggest that they also have different biological functions.


2020 ◽  
Author(s):  
Anna Meledin ◽  
Xiaohui Li ◽  
Elena Matveev ◽  
Boaz Gildor ◽  
Ofer Katzir ◽  
...  

A hallmark of muscle development is that myoblasts fuse to form myofibers. However, smooth muscles and cardiomyocytes do not generally fuse. In C. elegans, the body wall muscles (BWMs), the physiological equivalents of skeletal muscles, are mononuclear. Here, to determine what would be the consequences of fusing BWMs, we express the cell-cell fusogen EFF-1 in these cells. We find that EFF-1 induces paralysis and dumpy phenotypes. To determine whether EFF-1-induced muscle fusion results in these pathologies we injected viruses pseudotyped with AFF-1, a paralog of EFF-1, into the pseudocoelom of C. elegans. When these engineered viruses encounter cells expressing EFF-1 or AFF-1 they are able to infect them as revealed by GFP expression from the viral genome. We find that AFF-1 viruses can fuse to EFF-1-expressing muscles revealing multinucleated fibers that cause paralysis and abnormal muscle morphogenesis. Thus, aberrant fusion of otherwise non-syncytial muscle cells may lead to pathological conditions.Graphical abstractSignificance statementMost cells are individual units that do not mix their cytoplasms. However, some cells fuse to become multinucleated in placenta, bones and muscles. In most animals, muscles are formed by myofibers that originate by cell-cell fusion. In contrast, in C. elegans the body wall muscles are mononucleated cells that mediate worm-like movement. EFF-1 and AFF-1 fusogens mediate physiological cell fusion in C. elegans. By ectopically expressing EFF-1 in body wall muscles we induce their fusion resulting in behavioral and morphological deleterious effects, revealing possible causes of congenital myopathies in humans. Using AFF-1-coated pseudoviruses we infect EFF-1-expressing muscle cells retargeting viral infection into these cells. We suggest that virus retargeting can be utilized to study myogenesis, neuronal regeneration, gamete fusion and screens for new fusogens in different organisms. In addition, our virus retargeting system can be used in gene-therapy, viral-based oncolysis and to study viral-host interactions.


1998 ◽  
Vol 111 (19) ◽  
pp. 2885-2895 ◽  
Author(s):  
E.B. Maryon ◽  
B. Saari ◽  
P. Anderson

Ryanodine receptor channels regulate contraction of striated muscle by gating the release of calcium ions from the sarcoplasmic reticulum. Ryanodine receptors are expressed in excitable and non-excitable cells of numerous species, including the nematode C. elegans. Unlike vertebrates, which have at least three ryanodine receptor genes, C. elegans has a single gene encoded by the unc-68 locus. We show that unc-68 is expressed in most muscle cells, and that the phenotypic defects exhibited by unc-68 null mutants result from the loss of unc-68 function in pharyngeal and body-wall muscle cells. The loss of unc-68 function in the isthmus and terminal bulb muscles of the pharynx causes a reduction in growth rate and brood size. unc-68 null mutants exhibit defective pharyngeal pumping (feeding) and have abnormal vacuoles in the terminal bulb of the pharynx. unc-68 is required in body-wall muscle cells for normal motility. We show that UNC-68 is localized in body-wall muscle cells to flattened vesicular sacs positioned between the apical plasma membrane and the myofilament lattice. In unc-68 mutants, the vesicles are enlarged and densely stained. The flattened vesicles in body-wall muscle cells thus represent the C. elegans sarcoplasmic reticulum. Morphological and behavioral phenotypes of unc-68 mutants suggest that intracellular calcium release is not essential for excitation-contraction coupling in C. elegans.


2001 ◽  
Vol 12 (9) ◽  
pp. 2835-2845 ◽  
Author(s):  
Byung-Jae Park ◽  
Duk-Gyu Lee ◽  
Jae-Ran Yu ◽  
Sun-ki Jung ◽  
Kyuyeong Choi ◽  
...  

Calreticulin (CRT), a Ca2+-binding protein known to have many cellular functions, including regulation of Ca2+ homoeostasis and chaperone activity, is essential for heart and brain development during embryogenesis in mice. Here, we report the functional characterization of Caenorhabditis elegans calreticulin (crt-1). Acrt-1 null mutant does not result in embryonic lethality but shows temperature-dependent reproduction defects. In C. elegans CRT-1 is expressed in the intestine, pharynx, body-wall muscles, head neurons, coelomocytes, and in sperm. crt-1males exhibit reduced mating efficiency and defects late in sperm development in addition to defects in oocyte development and/or somatic gonad function in hermaphrodites. Furthermore, crt-1 anditr-1 (inositol triphosphate receptor) together are required for normal behavioral rhythms. crt-1transcript level is elevated under stress conditions, suggesting that CRT-1 may be important for stress-induced chaperoning function inC. elegans.


Sign in / Sign up

Export Citation Format

Share Document