scholarly journals Calreticulin, a Calcium-binding Molecular Chaperone, Is Required for Stress Response and Fertility in Caenorhabditis elegans

2001 ◽  
Vol 12 (9) ◽  
pp. 2835-2845 ◽  
Author(s):  
Byung-Jae Park ◽  
Duk-Gyu Lee ◽  
Jae-Ran Yu ◽  
Sun-ki Jung ◽  
Kyuyeong Choi ◽  
...  

Calreticulin (CRT), a Ca2+-binding protein known to have many cellular functions, including regulation of Ca2+ homoeostasis and chaperone activity, is essential for heart and brain development during embryogenesis in mice. Here, we report the functional characterization of Caenorhabditis elegans calreticulin (crt-1). Acrt-1 null mutant does not result in embryonic lethality but shows temperature-dependent reproduction defects. In C. elegans CRT-1 is expressed in the intestine, pharynx, body-wall muscles, head neurons, coelomocytes, and in sperm. crt-1males exhibit reduced mating efficiency and defects late in sperm development in addition to defects in oocyte development and/or somatic gonad function in hermaphrodites. Furthermore, crt-1 anditr-1 (inositol triphosphate receptor) together are required for normal behavioral rhythms. crt-1transcript level is elevated under stress conditions, suggesting that CRT-1 may be important for stress-induced chaperoning function inC. elegans.

2000 ◽  
Vol 113 (22) ◽  
pp. 3947-3958 ◽  
Author(s):  
J.H. Cho ◽  
Y.S. Oh ◽  
K.W. Park ◽  
J. Yu ◽  
K.Y. Choi ◽  
...  

Calsequestrin is the major calcium-binding protein of cardiac and skeletal muscles whose function is to sequester Ca(2+)in the lumen of the sarcoplasmic reticulum (SR). Here we describe the identification and functional characterization of a C. elegans calsequestrin gene (csq-1). CSQ-1 shows moderate similarity (50% similarity, 30% identity) to rabbit skeletal calsequestrin. Unlike mammals, which have two different genes encoding cardiac and fast-twitch skeletal muscle isoforms, csq-1 is the only calsequestrin gene in the C. elegans genome. We show that csq-1 is highly expressed in the body-wall muscles, beginning in mid-embryogenesis and maintained through the adult stage. In body-wall muscle cells, CSQ-1 is localized to sarcoplasmic membranes surrounding sarcomeric structures, in the regions where ryanodine receptors (UNC-68) are located. Mutation in UNC-68 affects CSQ-1 localization, suggesting that the two possibly interact in vivo. Genetic analyses of chromosomal deficiency mutants deleting csq-1 show that CSQ-1 is not essential for initiation of embryonic muscle formation and contraction. Furthermore, double-stranded RNA injection resulted in animals completely lacking CSQ-1 in body-wall muscles with no observable defects in locomotion. These findings suggest that although CSQ-1 is one of the major calcium-binding proteins in the body-wall muscles of C. elegans, it is not essential for body-wall muscle formation and contraction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pamela Santonicola ◽  
Marcello Germoglio ◽  
Domenico Scotto d’Abbusco ◽  
Adele Adamo

AbstractCystathionine β-synthase (CBS) is a eukaryotic enzyme that maintains the cellular homocysteine homeostasis and catalyzes the conversion of homocysteine to L-cystathionine and Hydrogen sulfide, via the trans-sulfuration pathway. In Caenorhabditis elegans, two cbs genes are present: cbs-1 functions similarly as to human CBS, and cbs-2, whose roles are instead unknown. In the present study we performed a phenotypic characterization of the cbs-2 mutant. The null cbs-2 mutant is viable, fertile and shows the wild-type complement of six bivalents in most oocyte nuclei, which is indicative of a correct formation of crossover recombination. In absence of synaptonemal complex formation (syp-2 mutant), loss of cbs-2 leads to chromosome fragmentation, suggesting that cbs-2 is essential during inter-sister repair. Interestingly, although proficient in the activation of the DNA damage checkpoint after exposure to genotoxic stress, the cbs-2 mutant is defective in DNA damage-induced apoptosis in meiotic germ cells. These results suggest possible functions for CBS-2 in meiosis, distinct from a role in the trans-sulfuration pathway. We propose that the C. elegans CBS-2 protein is required for both inter-sister repair and execution of DNA damage-induced apoptosis.


2011 ◽  
Vol 22 (14) ◽  
pp. 2564-2578 ◽  
Author(s):  
L. Luo ◽  
M. Hannemann ◽  
S. Koenig ◽  
J. Hegermann ◽  
M. Ailion ◽  
...  

In yeast the Golgi-associated retrograde protein (GARP) complex is required for tethering of endosome-derived transport vesicles to the late Golgi. It consists of four subunits—Vps51p, Vps52p, Vps53p, and Vps54p—and shares similarities with other multimeric tethering complexes, such as the conserved oligomeric Golgi (COG) and the exocyst complex. Here we report the functional characterization of the GARP complex in the nematode Caenorhabditis elegans. Furthermore, we identified the C. elegans Vps51 subunit, which is conserved in all eukaryotes. GARP mutants are viable but show lysosomal defects. We show that GARP subunits bind specific sets of Golgi SNAREs within the yeast two-hybrid system. This suggests that the C. elegans GARP complex also facilitates tethering as well as SNARE complex assembly at the Golgi. The GARP and COG tethering complexes may have overlapping functions for retrograde endosome-to-Golgi retrieval, since loss of both complexes leads to a synthetic lethal phenotype.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Celine Moorman ◽  
Ronald H A Plasterk

AbstractThe sgs-1 (suppressor of activated Gαs) gene encodes one of the four adenylyl cyclases in the nematode C. elegans and is most similar to mammalian adenylyl cyclase type IX. We isolated a complete loss-of-function mutation in sgs-1 and found it to result in animals with retarded development that arrest in variable larval stages. sgs-1 mutant animals exhibit lethargic movement and pharyngeal pumping and (while not reaching adulthood) have a mean life span that is >50% extended compared to wild type. An extensive set of reduction-of-function mutations in sgs-1 was isolated in a screen for suppressors of a neuronal degeneration phenotype induced by the expression of a constitutively active version of the heterotrimeric Gαs subunit of C. elegans. Although most of these mutations change conserved residues within the catalytic domains of sgs-1, mutations in the less-conserved transmembrane domains are also found. The sgs-1 reduction-of-function mutants are viable and have reduced locomotion rates, but do not show defects in pharyngeal pumping or life span.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 712-724 ◽  
Author(s):  
Dave Pilgrim

A genetic approach was taken to identify new transposable element Tc1 -dependent polymorphisms on the left end of linkage group III in the nematode Caenorhabditis elegans. The cloning of the genomic DNA surrounding the Tc1 allowed the selection of overlapping clones (from the collection being used to assemble the physical map of the C. elegans genome). A contig of approximately 600–800 kbp in the region has been identified, the genetic map of the region has been refined, and 10 new RFLPs as well as at least four previously characterized genetic loci have been positioned onto the physical map, to the resolution of a few cosmids. This analysis demonstrated the ability to combine physical and genetic mapping for the rapid analysis of large genomic regions (0.5–1 Mbp) in genetically amenable eukaryotes.Key words: Caenorhabditis elegans, genome analysis, RFLP, physical map, genetic map.


1996 ◽  
Vol 317 (3) ◽  
pp. 721-729 ◽  
Author(s):  
Johanna VEIJOLA ◽  
Pia ANNUNEN ◽  
Peppi KOIVUNEN ◽  
Antony P. PAGE ◽  
Taina PIHLAJANIEMI ◽  
...  

Protein disulphide isomerase (PDI; EC 5.3.4.1) is a multifunctional polypeptide that is identical to the β subunit of prolyl 4-hydroxylases. We report here on the cloning and expression of the Caenorhabditis elegans PDI/β polypeptide and its isoform. The overall amino acid sequence identity and similarity between the processed human and C. elegans PDI/β polypeptides are 61% and 85% respectively, and those between the C. elegans PDI/β polypeptide and the PDI isoform 46% and 73%. The isoform differs from the PDI/β and ERp60 polypeptides in that its N-terminal thioredoxin-like domain has an unusual catalytic site sequence -CVHC-. Expression studies in insect cells demonstrated that the C. elegans PDI/β polypeptide forms an active prolyl 4-hydroxylase α2β2 tetramer with the human α subunit and an αβ dimer with the C. elegans α subunit, whereas the C. elegans PDI isoform formed no prolyl 4-hydroxylase with either α subunit. Removal of the 32-residue C-terminal extension from the C. elegans α subunit totally eliminated αβ dimer formation. The C. elegans PDI/β polypeptide formed less prolyl 4-hydroxylase with both the human and C. elegans α subunits than did the human PDI/β polypeptide, being particularly ineffective with the C. elegans α subunit. Experiments with hybrid polypeptides in which the C-terminal regions had been exchanged between the human and C. elegans PDI/β polypeptides indicated that differences in the C-terminal region are one reason, but not the only one, for the differences in prolyl 4-hydroxylase formation between the human and C. elegans PDI/β polypeptides. The catalytic properties of the C. elegans prolyl 4-hydroxylase αβ dimer were very similar to those of the vertebrate type II prolyl 4-hydroxylase tetramer, including the Km for the hydroxylation of long polypeptide substrates.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 797-803 ◽  
Author(s):  
M.J. Stern ◽  
H.R. Horvitz

In wild-type Caenorhabditis elegans hermaphrodites, two bilaterally symmetric sex myoblasts (SMs) migrate anteriorly to flank the precise center of the gonad, where they divide to generate the muscles required for egg laying (J. E. Sulston and H. R. Horvitz (1977) Devl Biol. 56, 110–156). Although this migration is largely independent of the gonad, a signal from the gonad attracts the SMs to their precise final positions (J. H. Thomas, M. J. Stern and H. R. Horvitz (1990) Cell 62, 1041–1052). Here we show that mutations in either of two genes, egl-15 and egl-17, cause the premature termination of the migrations of the SMs. This incomplete migration is caused by the repulsion of the SMs by the same cells in the somatic gonad that are the source of the attractive signal in wild-type animals.


Sign in / Sign up

Export Citation Format

Share Document