Hair follicle predetermination

2001 ◽  
Vol 114 (19) ◽  
pp. 3419-3431 ◽  
Author(s):  
Andrei A. Panteleyev ◽  
Colin A. B. Jahoda ◽  
Angela M. Christiano

Recent genetic and molecular studies of hair follicle (HF) biology have provided substantial insight; however, the molecular data, including expression patterns, cannot be properly appreciated without an understanding of the basic cellular rearrangements and interactions that underpin HF cyclic transformations. We present a novel interpretation of the major cellular processes that take place during HF cycling – the hypothesis of hair follicle predetermination. This hypothesis is an extension of previous models of HF cellular kinetics but has two critical modifications: the dual origin of the cycling portion of the HF, and the timing of the recruitment of stem cells. A compilation of evidence suggests that the ascending portion of the HF (hair shaft and inner root sheath) arises not from bulge-located HF stem cells that contribute to the formation of only the outer root sheath (ORS), but instead from the germinative cells localized in the secondary hair germ. In middle anagen, upon completion of the downward growth of the HF, cells derived from the bulge region migrate downward along the ORS to reside at the periphery of the HF bulb as a distinct, inactive cell population that has specific patterns of gene expression - ‘the lateral disc’. These cells survive catagen-associated apoptosis and, under the direct influence of the follicular papilla (FP), transform into the hair germ and acquire the ability to respond to FP signaling and produce a new hair. Thus, we propose that the specific sensitivity of germ cells to FP signaling and their commitment to produce the ascending HF layers are predetermined by the previous hair cycle during the process of transformation of bulge-derived lateral disc cells into the secondary hair germ.

2007 ◽  
Vol 177 (3) ◽  
pp. 501-513 ◽  
Author(s):  
Katrin Lorenz ◽  
Carsten Grashoff ◽  
Robert Torka ◽  
Takao Sakai ◽  
Lutz Langbein ◽  
...  

Integrin-linked kinase (ILK) links integrins to the actin cytoskeleton and is believed to phosphorylate several target proteins. We report that a keratinocyte-restricted deletion of the ILK gene leads to epidermal defects and hair loss. ILK-deficient epidermal keratinocytes exhibited a pronounced integrin-mediated adhesion defect leading to epidermal detachment and blister formation, disruption of the epidermal–dermal basement membrane, and the translocation of proliferating, integrin-expressing keratinocytes to suprabasal epidermal cell layers. The mutant hair follicles were capable of producing hair shaft and inner root sheath cells and contained stem cells and generated proliferating progenitor cells, which were impaired in their downward migration and hence accumulated in the outer root sheath and failed to replenish the hair matrix. In vitro studies with primary ILK-deficient keratinocytes attributed the migration defect to a reduced migration velocity and an impaired stabilization of the leading-edge lamellipodia, which compromised directional and persistent migration. We conclude that ILK plays important roles for epidermis and hair follicle morphogenesis by modulating integrin-mediated adhesion, actin reorganization, and plasma membrane dynamics in keratinocytes.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2069
Author(s):  
Hanluo Li ◽  
Federica Francesca Masieri ◽  
Marie Schneider ◽  
Tina Kottek ◽  
Sebastian Hahnel ◽  
...  

Background: Regenerative therapies based on autologous mesenchymal stem cells (MSC) as well as stem cells in general are still facing an unmet need for non-invasive sampling, availability, and scalability. The only known adult source of autologous MSCs permanently available with no pain, discomfort, or infection risk is the outer root sheath of the hair follicle (ORS). Methods: This study presents a non-invasively-based method for isolating and expanding MSCs from the ORS (MSCORS) by means of cell migration and expansion in air–liquid culture. Results: The method yielded 5 million cells of pure MSCORS cultured in 35 days, thereby superseding prior art methods of culturing MSCs from hair follicles. MSCORS features corresponded to the International Society for Cell Therapy characterization panel for MSCs: adherence to plastic, proliferation, colony forming, expression of MSC-markers, and adipo-, osteo-, and chondro-differentiation capacity. Additionally, MSCORS displayed facilitated random-oriented migration and high proliferation, pronounced marker expression, extended endothelial and smooth muscle differentiation capacity, as well as a paracrine immunomodulatory effect on monocytes. MSCORS matched or even exceeded control adipose-derived MSCs in most of the assessed qualities. Conclusions: MSCORS qualify for a variety of autologous regenerative treatments of chronic disorders and prophylactic cryopreservation for purposes of acute treatments in personalized medicine.


2013 ◽  
Vol 24 (24) ◽  
pp. 3939-3944 ◽  
Author(s):  
Shangxi Liu ◽  
Andrew Leask

It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Hanluo Li ◽  
Federica Francesca Masieri ◽  
Marie Schneider ◽  
Alexander Bartella ◽  
Sebastian Gaus ◽  
...  

Hair follicle outer root sheath (ORS) is a putative source of stem cells with therapeutic capacity. ORS contains several multipotent stem cell populations, primarily in the distal compartment of the bulge region. However, the bulge is routinely obtained using invasive isolation methods, which require human scalp tissue ex vivo. Non-invasive sampling has been standardized by means of the plucking procedure, enabling to reproducibly obtain the mid-ORS part. The mid-ORS shows potential for giving rise to multiple stem cell populations in vitro. To demonstrate the phenotypic features of distal, middle, and proximal ORS parts, gene and protein expression profiles were studied in physically separated portions. The mid-part of the ORS showed a comparable or higher NGFR, nestin/NES, CD34, CD73, CD44, CD133, CK5, PAX3, MITF, and PMEL expression on both protein and gene levels, when compared to the distal ORS part. Distinct subpopulations of cells exhibiting small and round morphology were characterized with flow cytometry as simultaneously expressing CD73/CD271, CD49f/CD105, nestin, and not CK10. Potentially, these distinct subpopulations can give rise to cultured neuroectodermal and mesenchymal stem cell populations in vitro. In conclusion, the mid part of the ORS holds the potential for yielding multiple stem cells, in particular mesenchymal stem cells.


2021 ◽  
Vol 10 (5) ◽  
pp. 911
Author(s):  
Vuk Savkovic ◽  
Hanluo Li ◽  
Danilo Obradovic ◽  
Federica Francesca Masieri ◽  
Alexander K. Bartella ◽  
...  

Neovascularization is regarded as a pre-requisite in successful tissue grafting of both hard and soft tissues alike. This study considers mesenchymal stem cells from hair follicle outer root sheath (MSCORS) as powerful tools with a neat angiogenic potential that could in the future have wide scopes of neo-angiogenesis and tissue engineering. Autologous MSCORS were obtained ex vivo by non-invasive plucking of hair and they were differentiated in vitro into both endothelial cells and vascular smooth muscle cells (SMCs), two crucial cellular components of vascular grafts. Assessment was carried out by immunostaining, confocal laser-scanning microscopy, gene expression analysis (qRT-PCR), quantitative analysis of anastomotic network parameters, and cumulative length quantification of immunostained α-smooth muscle actin-containing stress fibers (α -SMA). In comparison to adipose mesenchymal stem cells, MSCORS exhibited a significantly higher differentiation efficiency according to key quantitative criteria and their endothelial derivatives demonstrated a higher angiogenic potential. Furthermore, the cells were capable of depositing their own extracellular matrix in vitro in the form of a membrane-cell sheet, serving as a base for viable co-culture of endothelial cells and SMCs integrated with their autologous matrix. Differentiated MSCORS hereby provided a complex autologous cell-matrix construct that demonstrates vascularization capacity and can serve as a base for personalized repair grafting applications.


1989 ◽  
Vol 109 (5) ◽  
pp. 2295-2312 ◽  
Author(s):  
P A Coulombe ◽  
R Kopan ◽  
E Fuchs

Keratins K14 and K5 have long been considered to be biochemical markers of the stratified squamous epithelia, including epidermis (Moll, R., W. Franke, D. Schiller, B. Geiger, and R. Krepler. 1982. Cell. 31:11-24; Nelson, W., and T.-T. Sun. 1983. J. Cell Biol. 97:244-251). When cells of most stratified squamous epithelia differentiate, they downregulate expression of mRNAs encoding these two keratins and induce expression of new sets of keratins specific for individual programs of epithelial differentiation. Frequently, as in the case of epidermis, the expression of differentiation-specific keratins also leads to a reorganization of the keratin filament network, including denser bundling of the keratin fibers. We report here the use of monospecific antisera and cRNA probes to examine the differential expression of keratin K14 in the complex tissue of human skin. Using in situ hybridizations and immunoelectron microscopy, we find that the patterns of K14 expression and filament organization in the hair follicle are strikingly different from epidermis. Some of the mitotically active outer root sheath (ORS) cells, which give rise to ORS under normal circumstances and to epidermis during wound healing, produce only low levels of K14. These cells have fewer keratin filaments than basal epidermal cells, and the filaments are organized into looser, more delicate bundles than is typical for epidermis. As these cells differentiate, they elevate their expression of K14 and produce denser bundles of keratin filaments more typical of epidermis. In contrast to basal cells of epidermis and ORS, matrix cells, which are relatively undifferentiated and which can give rise to inner root sheath, cuticle and hair shaft, show no evidence of K14, K14 mRNA expression, or keratin filament formation. As matrix cells differentiate, they produce hair-specific keratins and dense bundles of keratin filaments but they do not induce K14 expression. Collectively, the patterns of K14 and K14 mRNA expression and filament organization in mitotically active epithelial cells of the skin correlate with their relative degree of pluripotency, and this suggests a possible basis for the deviation of hair follicle programs of differentiation from those of other stratified squamous epithelia.


2019 ◽  
Vol 244 (5) ◽  
pp. 389-394
Author(s):  
Xinping Li ◽  
Xin Wang ◽  
Liming Bai ◽  
Pin Zhao ◽  
Mingsheng Zhang

Many studies have suggested that electromagnetic field activity affects the cellular activity of many types of cells involved in forming hair follicles. However, the bio-effects of electromagnetic fields on hair follicle growth have not been fully elucidated. This present study was designed to determine whether 50 Hz electromagnetic fields increased hair follicle regrowth. In this experiment, C57BL/6 mice were used to present the model of depilation-induced hair follicle cycling, and then those mice were divided at random into the control group and the electromagnetic field group. After electromagnetic field (50 Hz, 5 mT) exposure for 16 days, the skin specimens of the mice were harvested to assess for hair regrowth, and epidermal stem cells proliferation was evaluated by immunofluorescence staining. The expression and location of keratinocyte growth factors were also tested. Our results showed that, compared to the control, the hair club formed faster on the 3rd day, and most of the hair shafts erupted earlier from the pore in the epidermis on the 9th day after depilation, and the hairs length was significantly longer on the 16th day within the electromagnetic field group. After electromagnetic field treatment, there were more Ki67+ cells in the outer root sheath and hair bulb where it co-localized with K15+ cells compared to the control. Keratinocyte growth factors were expressed in the inner root sheath in both groups, and the electromagnetic field group showed more expression of keratinocyte growth factors. Our data suggested that the hair-growth-promoting effect of the 50 Hz electromagnetic field was observed in depilation-induced hair follicles cycling, which was associated with 50 Hz electromagnetic field enhancing K15+ stem cells proliferation and increased keratinocyte growth factor expression. Impact statement In this study, our experiments confirmed that 50 Hz EMF affected hair follicle regrowth, and 50 Hz EMF enhanced K15+ stem cells proliferation in the hair bulb and follicular outer root sheath of hair follicles. Those results indicated that 50 Hz EMF may be beneficial for functional healing of hair loss.


1992 ◽  
Vol 40 (9) ◽  
pp. 1329-1337 ◽  
Author(s):  
V Mils ◽  
C Vincent ◽  
F Croute ◽  
G Serre

Using five monoclonal antibodies (MAb), we studied by indirect immunofluorescence the desmosomes and a junctional structure specific to cornified layers, the corneodesmosome, in normal and plantar epidermis and in the various sheaths of the anagen hair follicle. The monoclonal antibodies DP1&2.2-15, PG5.1, and DG3.10, specific for desmoplakins I/II, plakoglobin, and desmoglein I, respectively, were used to study the desmosome antigens, and G36-19 and G20-21 to study the corneodesmosome antigens. The distribution and sequence of expression of the five antigens allowed the nine epithelial differentiation pathways studied to be merged into four distinct families: non-plantar epidermis, characterized by the absence of desmosome and corneodesmosome antigens in the stratum corneum; the outer root sheath of the hair follicle, which behaves like the viable layers of the epidermis with regard to the desmosome antigens but does not express the corneodesmosome antigens; plantar epidermis and the three components of the inner root sheath in which the corneodesmosome antigens are present up to the desquamating layer; and the three components of the hair shaft, which are characterized by the absence of expression of both the desmosome and the corneodesmosome antigens in its mature portion.


2021 ◽  
pp. 1-7
Author(s):  
Jingzhu Bai ◽  
Zijian Gong ◽  
Qingfang Xu ◽  
Haiyan Chen ◽  
Qiaoping Chen ◽  
...  

<b><i>Background/Objective:</i></b> Hair cycle is regulated by many biological factors. Cathepsins are involved in various physiological processes in human skin. Here, we investigated the cathepsin expression and distribution changes in follicular growth cycles for better understanding the hair cycles and to explore new intervention measures. <b><i>Methods:</i></b> The 24 mice (C57BL/6, female, 7-week old) were selected and removed the back hair via rosin/paraffin method. At Day 8, Day 20, and Day 25, biopsy on post-plucking area was done. Immunohistochemical staining, Western blot, and Q-PCR were used to test the cathepsin B/D/L/E. <b><i>Results:</i></b> In anagen, cathepsins (B, D, L, and E) were distributed in the hair follicle matrix, inner hair root sheath, and hair. In catagen, cathepsins were mainly observed in un-apoptosis inner root sheath and outer root sheath. Expression of cathepsins B-mRNA and L-mRNA was decreased from anagen and catagen to telogen. Cathepsin D-mRNA was increased in catagen and then decreased in telogen. Cathepsin E-mRNA was decreased in catagen and slightly increased in telogen. <b><i>Conclusions:</i></b> The distribution and expression of cathepsins B, D, L, and E in hair follicle changed with hair growth process which indicated that cathepsins might act as selectable biomarkers of hair cycle in different stages.


Sign in / Sign up

Export Citation Format

Share Document