Loss of the mitochondrial Hsp70 functions causes aggregation of mitochondria in yeast cells

2001 ◽  
Vol 114 (19) ◽  
pp. 3565-3574 ◽  
Author(s):  
Akemi Kawai ◽  
Shuh-ichi Nishikawa ◽  
Aiko Hirata ◽  
Toshiya Endo

Ssc1p, a member of the Hsp70 family in the mitochondrial matrix of budding yeast, mediates protein import into mitochondria and prevents irreversible aggregation of proteins in the mitochondrial matrix during folding/assembly or at elevated temperature. Here, we show that functional inactivation of the mitochondrial Hsp70 system causes aggregation of mitochondria. When temperature-sensitive mitochondrial Hsp70 mutant cells were incubated at restrictive temperature, a tubular network of mitochondria was collapsed to form aggregates. Inhibition of protein synthesis in the cytosol did not suppress the mitochondrial aggregation and functional impairment of Tim23, a subunit of mitochondrial protein translocator in the inner membrane, did not cause mitochondrial aggregation. Therefore defects of the Hsp70 function in protein import into mitochondria or resulting accumulation of precursor forms of mitochondrial proteins outside the mitochondria are not the causal reason for the aberrant mitochondrial morphology. By contrast, deletion of Mdj1p, a functional partner for mitochondrial Hsp70 in prevention of irreversible protein aggregation in the matrix, but not in protein import into mitochondria, caused aggregation of mitochondria, which was enhanced at elevated temperature (37°C). The aggregation of mitochondria at 37°C was reversed when the temperature was lowered to 23°C unless protein synthesis was blocked. On the basis of these results, we propose that the mitochondrial matrix contains a protein that is responsible for the maintenance of mitochondrial morphology and requires mitochondrial Hsp70 for its function.

1993 ◽  
Vol 122 (5) ◽  
pp. 1003-1012 ◽  
Author(s):  
JL Emtage ◽  
RE Jensen

To identify new components that mediate mitochondrial protein import, we analyzed mas6, an import mutant in the yeast Saccharomyces cerevisiae. mas6 mutants are temperature sensitive for viability, and accumulate mitochondrial precursor proteins at the restrictive temperature. We show that mas6 does not correspond to any of the presently identified import mutants, and we find that mitochondria isolated from mas6 mutants are defective at an early stage of the mitochondrial protein import pathway. MAS6 encodes a 23-kD protein that contains several potential membrane spanning domains, and yeast strains disrupted for MAS6 are inviable at all temperatures and on all carbon sources. The Mas6 protein is located in the mitochondrial inner membrane and cannot be extracted from the membrane by alkali treatment. Antibodies to the Mas6 protein inhibit import into isolated mitochondria, but only when the outer membrane has been disrupted by osmotic shock. Mas6p therefore represents an essential import component located in the mitochondrial inner membrane.


1991 ◽  
Vol 11 (5) ◽  
pp. 2647-2655 ◽  
Author(s):  
B J Smith ◽  
M P Yaffe

Yeast cells containing the recessive mas3 mutation display temperature-sensitive defects in both mitochondrial protein import and the cell division cycle. The import defect is characterized by two pools of mitochondrial precursors and a dramatically slower rate of posttranslational import. The effect of mas3 on cell cycle progression occurs within one cell cycle at the nonpermissive temperature and retards progression through the G2 stage. The mas3 mutation maps to the gene encoding yeast heat-shock transcription factor (HSF), and expression of wild-type HSF complements the temperature-sensitive defects. The mas3 lesion has no apparent effect on protein secretion. In mas3 cells, induction of a major heat-shock gene, SSA1, is defective at 37 degrees C. The properties of the mas3 mutant cells indicate that HSF mediates the response to stress of two basic cellular processes: mitochondrial protein import and cell cycle progression.


1991 ◽  
Vol 11 (5) ◽  
pp. 2647-2655 ◽  
Author(s):  
B J Smith ◽  
M P Yaffe

Yeast cells containing the recessive mas3 mutation display temperature-sensitive defects in both mitochondrial protein import and the cell division cycle. The import defect is characterized by two pools of mitochondrial precursors and a dramatically slower rate of posttranslational import. The effect of mas3 on cell cycle progression occurs within one cell cycle at the nonpermissive temperature and retards progression through the G2 stage. The mas3 mutation maps to the gene encoding yeast heat-shock transcription factor (HSF), and expression of wild-type HSF complements the temperature-sensitive defects. The mas3 lesion has no apparent effect on protein secretion. In mas3 cells, induction of a major heat-shock gene, SSA1, is defective at 37 degrees C. The properties of the mas3 mutant cells indicate that HSF mediates the response to stress of two basic cellular processes: mitochondrial protein import and cell cycle progression.


2006 ◽  
Vol 174 (5) ◽  
pp. 631-637 ◽  
Author(s):  
Yasushi Tamura ◽  
Yoshihiro Harada ◽  
Koji Yamano ◽  
Kazuaki Watanabe ◽  
Daigo Ishikawa ◽  
...  

Newly synthesized mitochondrial proteins are imported into mitochondria with the aid of protein translocator complexes in the outer and inner mitochondrial membranes. We report the identification of yeast Tam41, a new member of mitochondrial protein translocator systems. Tam41 is a peripheral inner mitochondrial membrane protein facing the matrix. Disruption of the TAM41 gene led to temperature-sensitive growth of yeast cells and resulted in defects in protein import via the TIM23 translocator complex at elevated temperature both in vivo and in vitro. Although Tam41 is not a constituent of the TIM23 complex, depletion of Tam41 led to a decreased molecular size of the TIM23 complex and partial aggregation of Pam18 and -16. Import of Pam16 into mitochondria without Tam41 was retarded, and the imported Pam16 formed aggregates in vitro. These results suggest that Tam41 facilitates mitochondrial protein import by maintaining the functional integrity of the TIM23 protein translocator complex from the matrix side of the inner membrane.


2006 ◽  
Vol 17 (9) ◽  
pp. 4051-4062 ◽  
Author(s):  
Michelle R. Gallas ◽  
Mary K. Dienhart ◽  
Rosemary A. Stuart ◽  
Roy M. Long

Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.


2020 ◽  
Vol 21 (11) ◽  
pp. 3820 ◽  
Author(s):  
Jia Xin Tang ◽  
Kyle Thompson ◽  
Robert W. Taylor ◽  
Monika Oláhová

The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.


2009 ◽  
Vol 184 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Yasushi Tamura ◽  
Yoshihiro Harada ◽  
Takuya Shiota ◽  
Koji Yamano ◽  
Kazuaki Watanabe ◽  
...  

Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.


1993 ◽  
Vol 4 (9) ◽  
pp. 931-939 ◽  
Author(s):  
D Feldheim ◽  
K Yoshimura ◽  
A Admon ◽  
R Schekman

SEC66 encodes the 31.5-kDa glycoprotein of the Sec63p complex, an integral endoplasmic reticulum membrane protein complex required for translocation of presecretory proteins in Saccharomyces cerevisiae. DNA sequence analysis of SEC66 predicts a 23-kDa protein with no obvious NH2-terminal signal sequence but with one domain of sufficient length and hydrophobicity to span a lipid bilayer. Antibodies directed against a recombinant form of Sec66p were used to confirm the membrane location of Sec66p and that Sec66p is a glycoprotein of 31.5 kDa. A null mutation in SEC66 renders yeast cells temperature sensitive for growth. sec66 cells accumulate some secretory precursors at a permissive temperature and a variety of precursors at the restrictive temperature. sec66 cells show defects in Sec63p complex formation. Because sec66 cells affect the translocation of some, but not all secretory precursor polypeptides, the role of Sec66p may be to interact with the signal peptide of presecretory proteins.


Author(s):  
Andrey Bogorodskiy ◽  
Ivan Okhrimenko ◽  
Ivan Maslov ◽  
Nina Maliar ◽  
Dmitrii Burkatovskii ◽  
...  

Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment. We developed a gentle microinjection procedure for fluorescent reporter proteins allowing a direct non-invasive study of protein transport in living cells. As a proof of principle, we visualized potential-dependent protein import into mitochondria inside intact cells in real-time. We validated that our approach does not distort mitochondrial morphology and preserves the endogenous expression system as well as mitochondrial protein translocation machinery. We observed that a release of nascent polypeptides chains from actively translating cellular ribosomes by puromycin strongly increased the import rate of the microinjected pre-protein. This suggests that a substantial amount of mitochondrial translocase complexes was involved in co-translational protein import of endogenously expressed pre-proteins. Our protein microinjection method opens new possibilities to study the role of mitochondrial protein import in cell models of various pathological conditions as well as aging processes.


Sign in / Sign up

Export Citation Format

Share Document