The Turnover of Collagen in Fibroblast Cultures

1973 ◽  
Vol 12 (1) ◽  
pp. 217-234
Author(s):  
J. STEINBERG

Collagen turnover was studied in mouse fibroblast cultures (3T6) by radioactive labelling and compartmental analyses. The incorporation of [14C]proline into protein during continuous labelling rapidly reached a maximum value which was directly proportional to the medium specific activity. Radioactivity appeared more slowly in hydroxyproline, and gradually accumulated as cultures became enriched in collagen and its breakdown products. In relation to total new protein synthesis, the proportional synthesis of collagen, as measured by the formation of [14C]hydroxyproline, was less in logarithmically growing than in stationary-phase cultures, and little was deposited in the cell layer. Newly synthesized hydroxyproline was consistently present in all growth media. In stationary-phase cultures, media contained as much as 60% of the total [14C]hydroxyproline in a form soluble in 0.5 M perchloric acid. Gel filtration chromatography confirmed that this was predominantly free hydroxyproline, only 30% appearing in small peptides whose degree of hydroxylation suggested their origin from larger collagen molecules. This acid-soluble compartment was taken as a convenient index of collagenolysis, which proved to be significant in both growth states, but was proportionately more important throughout logarithmic growth. Reincubation of prelabelled cultures in fresh medium containing an excess of non-radioactive proline (‘chase’ medium) was followed by the degradative loss of labelled cell layer protein. The released radioactivity could be quantitatively recovered in the growth medium for periods up to 6 days; the rate of its appearance was little influenced by the frequency of feeding. Despite extensive dilution of the proline precursor-pool specific activity, synthesis of [14C]hydroxyproline continued in all chase cultures. The increment appeared largely as collagen breakdown products in the growth medium, and probably arose from 2 principal sources: (1) recently deposited collagen, and (2) the hydroxylation of peptidyl-[14C]proline residues in protocollagen. The balance between these contributions seemed to be dependent upon the extent to which ‘ageing’ of the cell layer collagen had occurred prior to initiating the chase. Radioactive hydroxyproline was rapidly lost from briefly prelabelled cell layers, but was well retained in a macromolecular form when the initial labelling period was sufficiently prolonged. It is proposed that the endogenous collagen-degradative apparatus attacks both young collagen and its polypeptide precursor, but that as the lability of the former substrate rapidly declines, enzyme activity continues to operate on protocollagen to yield [14C]hydroxyproline-containing breakdown products which gradually diminish as the latter substrate pool is exhausted.

2009 ◽  
Vol 420 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Allison L. Gregory ◽  
Brenden A. Hurley ◽  
Hue T. Tran ◽  
Alexander J. Valentine ◽  
Yi-Min She ◽  
...  

PEPC [PEP(phosphoenolpyruvate) carboxylase] is a tightly controlled cytosolic enzyme situated at a major branchpoint in plant metabolism. Accumulating evidence indicates important functions for PEPC and PPCK (PEPC kinase) in plant acclimation to nutritional Pi deprivation. However, little is known about the genetic origin or phosphorylation status of native PEPCs from −Pi (Pi-deficient) plants. The transfer of Arabidopsis suspension cells or seedlings to −Pi growth media resulted in: (i) the marked transcriptional upregulation of genes encoding the PEPC isoenzyme AtPPC1 (Arabidopsis thaliana PEPC1), and PPCK isoenzymes AtPPCK1 and AtPPCK2; (ii) >2-fold increases in PEPC specific activity and in the amount of an immunoreactive 107-kDa PEPC polypeptide (p107); and (iii) In vivo p107 phosphorylation as revealed by immunoblotting of clarified extracts with phosphosite-specific antibodies to Ser-11 (which could be reversed following Pi resupply). Approx. 1.3 mg of PEPC was purified 660-fold from −Pi suspension cells to apparent homogeneity with a specific activity of 22.3 units · mg−1 of protein. Gel filtration, SDS/PAGE and immunoblotting demonstrated that purified PEPC exists as a 440-kDa homotetramer composed of identical p107 subunits. Sequencing of p107 tryptic and Asp-N peptides by tandem MS established that this PEPC is encoded by AtPPC1. Pi-affinity PAGE coupled with immunoblotting indicated stoichiometric phosphorylation of the p107 subunits of AtPPC1 at its conserved Ser-11 phosphorylation site. Phosphorylation activated AtPPC1 at pH 7.3 by lowering its Km(PEP) and its sensitivity to inhibition by L-malate and L-aspartate, while enhancing activation by glucose 6-phosphate. Our results indicate that the simultaneous induction and In vivo phosphorylation activation of AtPPC1 contribute to the metabolic adaptations of −PiArabidopsis.


1990 ◽  
Vol 5 (5) ◽  
pp. 441-452 ◽  
Author(s):  
Jens Nicolai Brink Larsen ◽  
Maurizio Bersani ◽  
James Olcese ◽  
Jens Juul Holst ◽  
Morten Møller

AbstractSpecific antisera, raised in rabbits, against somatostatin 1-14, somatostatin 1-28, the fragment 1-12 of somatostatin 1-28, and prosomatostatin 20-36 were used for immunohistochemistry and gel filtration of the rat retina.With all antisera, immunoreactive perikarya could be located in the inner nuclear and ganglion cell layers. In the inner nuclear layer, amacrine cells with processes extending predominantly into the first sublayer of the inner plexiform layer were observed. Some processes extended also to the ganglion cell layer. In addition, somatostatin-immunoreactive interplexiform cells were present in the inner nuclear layer.In the ganglion cell layer, perikarya were found located in the midperiphery and in the far periphery of the retina. The neurons located in the midperiphery of the retina possessed a round perikaryon from which processes could be followed going into the inner plexiform layer, where they dichotomized in the third and first sublayers. The perikarya in the far periphery of the retina near the ora serrata exhibited an ovoid-shaped cell body from which processes extended horizontally in a bipolar manner in the layer itself.By use of an [35S]-labeled antisense oligonucleotide probe, in situ hybridization of the rat retina showed the presence of perikarya in the inner nuclear layer and ganglion cell layer containing mRNA encoding for prosomatostatin.Gel filtration of the retinal extracts followed by radioimmunoassay showed the presence of somatostatin 1-14, the fragment 1-12 of somatostatin 1-28, and prosomatostatin 1-64. However, somatostatin 1-28 was not detected.The results obtained in this study verify the presence of somatostatin 1-14 in the rat retina located in perikarya and processes in the inner nuclear and ganglion cell layers. The positive in-situ hybridization signals show that the intraneuronal somatostatin immunoreactivity is due to synthesis of the peptide and not uptake in the neurons. The presence of the somatostatin propeptide and fragments of this propeptide, in both intraretinal perikarya and fibers, indicate a posttranslational modification of this neuropeptide in the perikarya and the processes as well.


1970 ◽  
Vol 7 (3) ◽  
pp. 671-682
Author(s):  
C. I. LEVENE ◽  
C. J. BATES

The growth of the 3T6 mouse fibroblast and synthesis of macromolecules has been studied over the last 6 days of the cultures' 14-day life span. The effect of ascorbic acid was also tested. During this period, the cells synthesized collagen, as judged by the appearance of non-dialysable hydroxyproline, which was identified by chemical assay and by radioactive incorporation studies. A high proportion of the collagen in the cell layer was insoluble in 0.1 N acetic acid. Of the hydroxyproline synthesized in the presence of ascorbic acid, about 75% was eventually liberated into the growth medium, and about 25-30% of the liberated material behaved as free hydroxyproline. In the absence of ascorbic acid, the cell layer hydroxyproline was reduced to one-third, but the growth medium hydroxyproline was unaffected. The cells also synthesized glycosaminoglycans, as judged by the appearance of cetyl pyridinium-precipitable uronic acid, and the incorporation of labelled glucosamine into macro-molecules. A large proportion of this material has the properties of hyaluronic acid. Ascorbic acid had no detectable effect on overall glycosaminoglycan synthesis, in contrast to healing tendonectomy wounds in guinea-pigs. Cell proliferation and general protein synthesis were virtually unaffected by ascorbic acid. Whereas general protein synthesis, like cell proliferation, declined in the ageing culture, glycosaminoglycan synthesis and collagen synthesis continued at a steady or increasing rate.


Author(s):  
Rahma R. Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M. S. Barakat

Abstract Background Insect lipid mobilization and transport are currently under research, especially lipases and lipophorin because of their roles in the production of energy and lipid transport at a flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from the last larval instar of Galleria mellonella. Results Purification methods by combination of ammonium sulfate [(NH4)2SO4] precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633 ± 0.000551 mg/ml and 1.5754 ± 0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in the purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore, biochemical characterization of fat body lipase was carried out through testing its activities against several factors, such as different temperatures, pH ranges, metal ions, and inhibitors ending by determination of their kinetic parameters with the use of p-nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35–37 °C and 37–40 °C and pH ranges of 7–9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+, and Na+ metal ions indicating that fat body lipase is metalloproteinase. Lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfonyl fluoride (PMSF), ethylene-diaminetetractic acid (EDTA), and ethylene glycoltetraacetic acid (EGTA) providing evidence of the presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 0.316 Umg− 1 Vmax and 301.95 mM Km. Conclusion Considering the purification of fat body lipase from larvae and the usage of some inhibitors especially ion chelating agents, it is suggested to develop a successful control of Galleria mellonella in near future by using lipase inhibitors.


1992 ◽  
Vol 12 (1) ◽  
pp. 15-21
Author(s):  
S. Kojima ◽  
K. Nara ◽  
Y. Inada ◽  
S. Hirose ◽  
Y. Saito

Platelet aggregation activity due to platelet-activating factor (PAF) was detected at high molecular weight (HMW) and low molecular weight fractions after gel-filtration chromatography of cell lysate of endothelial cells. [3H]PAF added to the cell lysate was similarly distributed after chromatography. The radioactivity associated with HMW fraction was not reduced by digesting the lysate with trypsin, suggesting that PAF was not making complexes with proteins but was included in lipid vesicles in cell lysate. Further evidence showed that an unknown specific factor(s) was needed to form these PAF-containing lipid vesicles. Radioactivity was not found in HMW fraction when [3H]PAF was mixed with cell lysate of vascular smooth muscle cells. When monomeric PAF was added to endothelial cell lysate, the specific activity of aggregation decreased to the level exerted by endogenous PAF-containing lipid vesicles due to incorporation into lipid vesicles. PAF in the form of lipid vesicles was more stable in plasma than monomeric form.


1972 ◽  
Vol 50 (10) ◽  
pp. 1132-1142 ◽  
Author(s):  
Eric James ◽  
R. O. Hurst ◽  
T. G. Flynn

Phosphoglyceromutase (2,3-diphospho-D-glycerate: 2-phospho-D-glycerate phosphotransferase, EC 2.7.5.3) has been purified from both frozen and fresh chicken breast muscle. During purification it was found that substrate, 3-phospho-D-glycerate stabilized the enzyme against heat inactivation to almost the same extent as did the cofactor 2,3-diphospho-D-glycerate.Phosphoglyceromutase prepared from frozen chicken breast muscle separated into three peaks of activity (I, II, and III) following chromatography on DEAE-Sephadex in 0.05 μ phosphate buffer, pH 8.0, using a 0.0–0.4 M NaCl gradient. Each peak of activity was shown by polyacrylamide disc gel electrophoresis at pH 9.3 to contain two enzymically active components (isoenzymes Ia Ib, IIa IIb, and IIIa IIIb). Isoenzymes in the same peak had the same specific activity. Phosphoglyceromutase prepared from fresh chicken breast muscle yielded only one peak of activity following chromatography on DEAE-Sephadex. This peak contained two enzymically active components corresponding to isoenzymes Ia and Ib. Additional peaks of activity were not produced when phosphoglyceromutase from fresh muscle was subjected to freezing and thawing.Isoenzyme Ia and mixtures of Ia and Ib, IIa and IIb, and IIIa and IIIb were homogeneous in the ultra-centrifuge sedimenting as single peaks. The sedimentation coefficient obtained for isoenzyme Ia and for Ia and Ib combined was 4.15 S, the diffusion constant 6.62 × 10−7 cm2/s, and the molecular weight calculated from both gel filtration and sedimentation data was of the order of 59 000. These results were confirmed by charge isomer studies which also showed that the isoenzymes of phosphoglyceromutase from frozen chicken breast muscle were proteins of the same size but different net charges.


Author(s):  
Ismat Bibi ◽  
Haq Nawaz Bhatti

This study deals with purification and characterization of lignin peroxidase (LiP) isolated from Agaricus bitorqus A66 during decolorization of NOVASOL Direct Black dye. A laboratory scale experiment was conducted for maximum LiP production under optimal conditions. Purification & fractionation of LiP was performed on DEAE-Sepharose ion exchange chromatography followed by Sephadex G-50 gel filtration. The purified LiP has a specific activity of 519 U/mg with 6.73% activity recover. The optimum pH and temperature of purified LiP for the oxidation of veratryl alcohol were 6.8 and 45 °C, respectively. Michaelis-Menten kinetic constants (Vmax and Km) were determined using different concentrations of veratryl alcohol (1-35 mM). The Km and Vmax were 16.67 mM and 179.2 U/mL respectively, for veratryl alcohol oxidation as determined from the Lineweaver-Burk plot. Thermal inactivation studies were carried out at different temperatures to check the thermal stability of the enzyme. Enthalpy of activation decreased where Free energy of activation for thermal denaturation increased at higher temperatures. A possible explanation for the thermal inactivation of LiP at higher temperatures is also discussed.


Development ◽  
2000 ◽  
Vol 127 (6) ◽  
pp. 1267-1276 ◽  
Author(s):  
P.D. Jenik ◽  
V.F. Irish

The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3433-3441 ◽  
Author(s):  
M.C. Perbal ◽  
G. Haughn ◽  
H. Saedler ◽  
Z. Schwarz-Sommer

In Antirrhinum majus, petal and stamen organ identity is controlled by two MADS-box transcription factors, DEFICIENS and GLOBOSA. Mutations in either of these genes result in the replacement of petals by sepaloid organs and stamens by carpelloid organs. Somatically stable def and glo periclinal chimeras, generated by transposon excision events, were used to study the non-cell-autonomous functions of these two MADS-box proteins. Two morphologically distinct types of chimeras were analysed using genetic, morphological and molecular techniques. Restoration of DEF expression in the L1 cell layer results in the reestablishment of DEF and GLO functions in L1-derived cells only; inner layer cells retain their mutant sepaloid features. Nevertheless, this activity is sufficient to allow the expansion of petal lobes, highlighting the role of DEF in the stimulation of cell proliferation and/or cell shape and elongation when expressed in the L1 layer. Establishment of DEF or GLO expression in L2 and L3 cell layers is accompanied by the recovery of petaloid identity of the epidermal cells but it is insufficient to allow petal lobe expansion. We show by in situ immunolocalisation that the non-cell-autonomy is due to direct trafficking of DEF and GLO proteins from the inner layer to the epidermal cells. At least for DEF, this movement appears to be polar since DEF acts cell-autonomously when expressed in the L1 cell layer. Furthermore, the petaloid revertant sectors observed on second whorl mutant organs and the mutant margins of petals of L2L3 chimeras suggest that DEF and GLO intradermal movement is limited. This restriction may reflect the difference in the regulation of primary plasmodesmata connecting cells from the same layer and secondary plasmodesmata connecting cells from different layers. We propose that control of intradermal trafficking of DEF and GLO could play a role in maintaining of the boundaries of their expression domains.


1991 ◽  
Vol 131 (3) ◽  
pp. 459-466 ◽  
Author(s):  
C. G. Prosser ◽  
I. R. Fleet ◽  
A. J. Davis ◽  
R. B. Heap

ABSTRACT 125I-Labelled insulin-like growth factor-I (IGF-I) was infused as the free form directly into the pudic artery supplying one gland of lactating goats (n = 6). The infusion was for 60 min and 0·4±0·09% (s.e.m.) of the infusate was secreted into milk from the infused gland during its first passage through that gland. A large proportion of the 125I-labelled IGF-I escaped into the systematic circulation and was secreted into milk of both glands. A total of 5·2±0·4% of infused radioactivity was recovered in milk from both glands from 0 to 720 min. Radioactivity consisted of trichloroacetic acid (TCA)-precipitable and -soluble counts which were shown by gel filtration to be authentic IGF-I and degraded products of the peptide. The amount and time course of TCA-soluble radioactivity in milk from both glands was similar, suggesting degradation of 125I-labelled IGF-I at extramammary sites. Maximum specific activity for 125I-labelled IGF-I in milk from the infused gland was reached 80–120 min after the start of infusion and was 2·5-fold greater than milk from the non-infused gland. The time course of appearance of 125I-labelled IGF-I in milk suggests that transfer was via the transcellular pathway and this was further supported by comparing the pattern of transfer of [14C]sucrose and [14C]amino acids. When excess unlabelled IGF-I was included in the infusate, specific activity in milk from the infused gland was reduced to that of the non-infused gland, indicating a competitive and saturable mechanism of secretion for 125I-labelled IGF-I. Comparison of uptake and secretion of 125I-labelled IGF-I into milk from the non-infused gland with that of endogenous immunoreactive IGF-I suggests that vectorial transport of IGF-I across the mammary gland may be a significant contributor of IGF-I levels in milk. Journal of Endocrinology (1991) 131, 459–466


Sign in / Sign up

Export Citation Format

Share Document