scholarly journals An indispensable role for dynamin-related protein 1 in beige and brown adipogenesis

2020 ◽  
Vol 133 (18) ◽  
pp. jcs247593 ◽  
Author(s):  
Raja Gopal Reddy Mooli ◽  
Dhanunjay Mukhi ◽  
Zhonghe Chen ◽  
Nia Buckner ◽  
Sadeesh K. Ramakrishnan

ABSTRACTEmerging evidence indicates that proper mitochondrial dynamics are critical for adipocyte differentiation and functional thermogenic capacity. We found that the mitochondrial fission protein dynamin-related protein 1 (DRP1, also known as DNML1) is highly expressed in brown adipose tissue compared to expression in white adipose tissue, and these expression levels increase during brown adipocyte differentiation. Our results reveal that the inhibition of DRP1 using mdivi-1 mitigates beige adipocyte differentiation and differentiation-associated mitochondrial biogenesis. We found that DRP1 is essential for the induction of the early-phase beige adipogenic transcriptional program. Intriguingly, inhibition of DRP1 is dispensable following the induction of beige adipogenesis and adipogenesis-associated mitochondrial biogenesis. Altogether, we demonstrate that DRP1 in preadipocytes plays an essential role in beige and brown adipogenesis.This article has an associated First Person interview with the first author of the paper.

2020 ◽  
Author(s):  
Raja Gopal Reddy Mooli ◽  
Dhanunjay Mukhi ◽  
Zhonghe Chen ◽  
Nia Buckner ◽  
Sadeesh K. Ramakrishnan

AbstractEmerging evidence indicates that proper mitochondrial dynamics is critical for adipocyte differentiation and functional thermogenic capacity. We found that mitochondrial fission protein dynamin-related protein 1 (DRP1) is highly expressed in brown adipose tissue compared to white adipose tissue and their levels increase during brown adipocyte differentiation. Our results reveal that the inhibition of DRP1 using Mdivi-1 mitigates adipocyte differentiation and differentiation-associated mitochondrial biogenesis. We found that DRP1 is essential for the induction of the early phase of adipogenic transcriptional program. Intriguingly, inhibition of DRP1 is dispensable following the induction of adipogenesis and adipogenesis-associated mitochondrial biogenesis. Together, we demonstrate that DRP1 in the preadipocytes plays an essential role in brown and beige adipogenesis.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Paul Huang ◽  
Sylvia Lee-Huang

Introduction: In addition to its roles as a vascular signaling molecule, nitric oxide (NO) plays roles in metabolism. Mice deficient in eNOS are overweight and develop insulin resistance. It is not known whether the metabolic effects are due to primary roles of NO, or to increased visceral adiposity, leading to secondary metabolic changes. Hypothesis: We hypothesized that NO plays distinct and separable primary roles in white and brown adipogenesis, which underlie the effects on adiposity, energy metabolism, and expression of thermogenic genes. Methods: We exposed wild-type and mice carrying specific gain of function and loss of function eNOS mutations to cold at 4C for 48 hours and assessed expression of thermogenic gene programs in white and brown adipose tissue. To study cell autonomous effects, we differentiated adipocyte precursors from brown and white fat in the presence of NOS inhibitors and NO donors, as well as with siRNA to knockdown eNOS expression. Results: Cold exposure resulted in upregulation of the thermogenic gene program in brown adipose tissue. Animals carrying a gain of function mutation in eNOS showed increased UCP1 expression even without cold exposure. Induction of thermogenic genes was more pronounced in the animals with gain of function eNOS mutation. Differentiation of adipocyte precursors showed effects of eNOS on adipogenesis. Cells treated with the pharmacologic blockade (L-NAME and L-NA) as well as genetic knockdown (siRNA) showed dose-dependent inhibition of adipocyte differentiation. MitoTracker Red CMXRos staining showed that treatment with the NO donor SNAP increases mitochondrial biogenesis, while L-NAME decreases mitochondrial biogenesis. Conclusions: We show that eNOS-derived NO plays distinct and separable roles in white and brown adipogenesis. In brown adipocytes, eNOS regulates the expression of the thermogenic gene program, with upregulation of expression even without cold exposure, and greater increase in response to cold. In white adipocytes, eNOS-derived NO is required for adipocyte differentiation and mitochondrial biogenesis.


1998 ◽  
Vol 331 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Josep A. VILLENA ◽  
Octavi VIÑAS ◽  
Teresa MAMPEL ◽  
Roser IGLESIAS ◽  
Marta GIRALT ◽  
...  

The regulation of transcription of the gene for the β subunit of the FoF1 ATP synthase (ATPsynβ) in brown adipose tissue has been studied as a model to determine the molecular mechanisms for mitochondrial biogenesis associated with brown adipocyte differentiation. The expression of the ATPsynβ mRNA is induced during the brown adipocyte differentiation that occurs during murine prenatal development or when brown adipocytes differentiate in culture. This induction occurs in parallel with enhanced gene expression for other nuclear and mitochondrially-encoded components of the respiratory chain/oxidative phosphorylation system (OXPHOS). Transient transfection assays indicated that the expression of the ATPsynβ gene promoter is higher in differentiated HIB-1B brown adipocytes than in non-differentiated HIB-1B cells. A major transcriptional regulatory site was identified between nt -306 and -266 in the ATPsynβ promoter. This element has a higher enhancer capacity in differentiated brown adipocyte HIB-1B cells than in non-differentiated cells. Electrophoretic shift analysis indicated that Sp1and nuclear respiratory factor-2/GA-binding protein (NRF2/GABP) were the main nuclear proteins present in brown adipose tissue that bind this site. Double-point mutant analysis indicated a major role for the NRF2/GABP site in the enhancer capacity of this element in brown fat cells. It is proposed that NRF2/GABP plays a pivotal role in the co-ordinated enhancement of OXPHOS gene expression associated with mitochondrial biogenesis in brown adipocyte differentiation.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Daisuke Irie ◽  
Hiroyuki Yamada ◽  
Taku Kato ◽  
Hiroyuki Kawahito ◽  
Kouji Ikeda ◽  
...  

[BACKGROUND] The angiotensin II type 1 (AT1) receptor in visceral white adipose tissue (WAT) is closely implicated in lipid metabolism and energy homeostasis. Recently, perivascular adipose tissue (PVAT) has been shown to play a crucial role in the development of atherosclerosis; however, the effects of AT1 on PVAT properties and their functional relevance in atherogenesis remain undefined. [METHOD AND RESULT] We examined the fat depot-specific difference of adipose tissue among epididymal WAT, PVAT surrounding thoracic aorta, and interscapular brown adipose tissue (BAT) in 8-week-old apoE deficient (apoE-/-) mice. The expression levels of brown adipocyte marker genes (UCP-1, PGC-1α, Elovl3, PPARα, and Cidea) were significantly higher in BAT and PVAT compared with WAT (P<0.01). White adipocyte marker genes (Igfbp3, DPT, Tcf21, and Hoxc9), which were hardly expressed in BAT, showed a moderate expression levels in PVAT, suggesting that PVAT has a strikingly different phenotype from the classical WAT and BAT. We next examined the properties of PVAT in 8-week-old apoE-/-/AT1 receptor deficient (Agtr1-/-) mice. After 4 weeks of western diet, the expression levels of adipocyte differentiation maker genes (PPARγ, FABP4, c/EBPα) were markedly increased in apoE -/- PVAT (P<0.05), which was completely diminished in apoE-/-/Agtr1 -/- PVAT (P<0.01). To investigate the effect of AT1 on the periaortic adipocyte differentiation, we performed primary culture of preadipocyte from stromal vascular fraction in Agtr1 -/- and Agtr1+/+ PVAT. The mRNA expressions of adipocyte differentiation marker genes (PPARγ, FABP4, and c/EBPα) were time-dependently increased in Agtr1+/+ adipocyte. In contrast, FABP4 and c/EBPα mRNA expressions were markedly inhibited in Agtr1 -/- adipocyte, whereas PPARγ did not differ between the two groups during differentiation, suggesting that AT1 is essentially implicated in the terminal differentiation of periaortic adipocyte. [CONCLUSION] Our findings demonstrate that AT1 regulates the expression levels of late stage of adipocyte-differentiation marker genes in PVAT, suggesting that AT1-mediated modulation of periaortic adipocyte differentiation could be a novel therapeutic target for the prevention of atherosclerosis.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Won Kon Kim ◽  
Baek-Soo Han

Abstract Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. These results suggested that the IDH1–α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.


2020 ◽  
Vol 21 (21) ◽  
pp. 7907
Author(s):  
Meike Dahlhaus ◽  
Julian Roos ◽  
Daniel Engel ◽  
Daniel Tews ◽  
Daniel Halbgebauer ◽  
...  

Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question.


2012 ◽  
Vol 443 (3) ◽  
pp. 799-810 ◽  
Author(s):  
Jordi Armengol ◽  
Josep A. Villena ◽  
Elayne Hondares ◽  
María C. Carmona ◽  
Hei Sook Sul ◽  
...  

Pref-1 (pre-adipocyte factor-1) is known to play a central role in regulating white adipocyte differentiation, but the role of Pref-1 in BAT (brown adipose tissue) has not been analysed. In the present study we found that Pref-1 expression is high in fetal BAT and declines progressively after birth. However, Pref-1-null mice showed unaltered fetal development of BAT, but exhibited signs of over-activation of BAT thermogenesis in the post-natal period. In C/EBP (CCAAT/enhancer-binding protein) α-null mice, a rodent model of impaired fetal BAT differentiation, Pref-1 was dramatically overexpressed, in association with reduced expression of the Ucp1 (uncoupling protein 1) gene, a BAT-specific marker of thermogenic differentiation. In brown adipocyte cell culture models, Pref-1 was mostly expressed in pre-adipocytes and declined with brown adipocyte differentiation. The transcription factor C/EBPδ activated the Pref-1 gene transcription in brown adipocytes, through binding to the proximal promoter region. Accordingly, siRNA (small interfering RNA)-induced C/EBPδ knockdown led to reduced Pref-1 gene expression. This effect is consistent with the observed overexpression of C/EBPδ in C/EBPα-null BAT and high expression of C/EBPδ in brown pre-adipocytes. Dexamethasone treatment of brown pre-adipocytes suppressed Pref-1 down-regulation occurring throughout the brown adipocyte differentiation process, increased the expression of C/EBPδ and strongly impaired expression of the thermogenic markers UCP1 and PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-α]. However, it did not alter normal fat accumulation or expression of non-BAT-specific genes. Collectively, these results specifically implicate Pref-1 in controlling the thermogenic gene expression program in BAT, and identify C/EBPδ as a novel transcriptional regulator of Pref-1 gene expression that may be related to the specific role of glucocorticoids in BAT differentiation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10391
Author(s):  
Takuya Sakurai ◽  
Toshiyuki Fukutomi ◽  
Sachiko Yamamoto ◽  
Eriko Nozaki ◽  
Takako Kizaki

In recent years, brown adipose tissue (BAT), which has a high heat-producing capacity, has been confirmed to exist even in adults, and it has become a focal point for the prevention and the improvement of obesity and lifestyle-related diseases. However, the influences of obesity and physical activity (PA) on the fluid factors secreted from BAT (brown adipokines) are not well understood. In this study, therefore, we focused on brown adipokines and investigated the effects of obesity and PA. The abnormal expressions of gene fluid factors such as galectin-3 (Lgals3) and Lgals3 binding protein (Lgals3bp), whose proteins are secreted from HB2 brown adipocytes, were observed in the interscapular BAT of obese mice fed a high-fat diet for 4 months. PA attenuated the abnormalities in the expressions of these genes. Furthermore, although the gene expressions of factors related to brown adipocyte differentiation such as peroxisome proliferator-activated receptor gamma coactivator 1-α were also down-regulated in the BAT of the obese mice, PA suppressed the down-regulation of these factors. On the other hand, lipogenesis was increased more in HB2 cells overexpressing Lgals3 compared with that in control cells, and the overexpression of Lgals3bp decreased the mitochondrial mass. These results indicate that PA attenuates the obesity-induced dysregulated expression of brown adipokines and suggests that Lgals3 and Lgals3bp are involved in brown adipocyte differentiation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Chuanhai Zhang ◽  
Yibing Weng ◽  
Fangxiong Shi ◽  
Wanzhu Jin

As a thermogenic organ, brown adipose tissue (BAT) has received a great attention in treating obesity and related diseases. It has been reported that brown adipocyte was derived from engrailed-1 (EN1) positive central dermomyotome. However, functions of EN1 in brown adipogenesis are largely unknown. Here we demonstrated that EN1 overexpression increased while EN1 knockdown decreased lipid accumulation and the expressions of key adipogenic genes including PPARγ2 and C/EBPαand mitochondrial OXPHOS as well as BAT specific marker UCP1. Taken together, our findings clearly indicate that EN1 is a positive regulator of brown adipogenesis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Kelsey Hildreth ◽  
Haley Overby ◽  
Sean Kodani ◽  
Christophe Morisseau ◽  
Bruce Hammock ◽  
...  

Abstract Objectives Brown adipose tissue has recently emerged as a novel target for obesity treatment and prevention. In contrast to the lipid storing function of white adipocytes, brown adipocytes are responsible for dissipating energy as heat, a process involving uncoupling protein 1 (UCP1). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme that converts epoxy fatty acids (EpFAs) into less active diols. By stabilizing endogenous EpFAs, potent small molecule sEH inhibitors have been shown to be beneficial for many chronic diseases. Several recent papers have reported that sEH inhibitors are able to reduce diet-induced obesity, possibly by upregulating UCP1 expression. In the current study, we sought to study the mechanisms by which sEH inhibitor acts on brown preadipocytes. Methods The effects of a potent sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), on murine brown adipocyte differentiation were evaluated by lipid accumulation and expression of brown adipocyte marker genes. PPAR alpha and PPAR gamma activation by t-AUCB was measured by their respective transactivation assays. The roles of PPARs were further studied by pharmacological antagonism and knockdown experiments by small RNA interference. Results We report that sEH expression was increased during murine brown adipocyte differentiation. t-AUCB dose-dependently promoted brown adipocyte differentiation. Moreover, we demonstrate that t-AUCB activated PPAR alpha, but not PPAR gamma. t-AUCB-induced upregulation of thermogenic gene Ucp1 and Pgc1 alpha and the general differentiation marker Fabp4 were significantly attenuated by the antagonist of PPAR alpha, GW6471. In contrast, they were only partially attenuated by the antagonist of PPAR gamma, GW9662, and specific knockdown of PPAR gamma. Conclusions Our findings suggest that sEH may regulate brown adipogenesis and sEH pharmacological inhibition by t-AUCB promotes brown adipogenesis, possibly through activation of PPAR alpha. Funding Sources The work is supported by NIH 1R15DK114790-01A1 (to LZ), R00DK100736 (to AB) and R01ES002710 (to BDH).


Sign in / Sign up

Export Citation Format

Share Document