Spike-shaped oscillations in the absence of measurable changes in cyclic AMP concentration in a mutant of Dictyostelium discoideum

1987 ◽  
Vol 87 (5) ◽  
pp. 723-730
Author(s):  
B. Wurster ◽  
R. Mohn

Periodic activities of Dictyostelium discoideum cells involve two types of oscillations, spike-shaped and sinusoidal. Spike-shaped oscillations are accompanied by the periodic synthesis and release of cyclic AMP, and cyclic AMP-activated cyclic AMP synthesis is believed to control these oscillations. Experiments described here call into question the importance of cyclic AMP in spike-shaped oscillations. Cell suspensions of strain agip43, an aggregation-deficient mutant of D. discoideum, displayed spike-shaped oscillations in light scattering with period lengths about 1.5 times larger than those of the parent strain. These oscillations were not accompanied by measurable oscillations of cyclic AMP and cyclic GMP. Applied cyclic AMP pulses elicited increases of two- to threefold in the cyclic AMP level and increases of seven- to ninefold in the cyclic GMP concentration. Cyclic AMP additions caused phase shifts in the oscillations of agip43 cells, suggesting that cyclic AMP receptors at the cell surface communicate with the oscillator. We interpret these results in terms of an oscillator not based on cyclic AMP. This oscillator should be coupled to the reaction system involving cyclic AMP synthesis and release. The latter can operate in an oscillatory manner in the parent strain Ax2 but not in mutant agip43.

1986 ◽  
Vol 64 (8) ◽  
pp. 722-732 ◽  
Author(s):  
J. D. Mee ◽  
D. M. Tortolo ◽  
M. B. Coukell

During development, prestalk and prespore cells of Dictyostelium discoideum become organized in multicellular structures. This physical association makes it difficult to characterize the two cell types biochemically and physiologically. In the present study, we have separated prestalk and prespore cells from 16-h slugs by the method of Tsang and Bradbury and have examined a number of chemotaxis-associated properties of these cells. When assayed on phosphate-buffered agar under both gradient and nongradient conditions, isolated prestalk cells responded chemotactically to cAMP and, unexpectedly, to folate and certain folate derivatives. In contrast, separated prespore cells failed to respond appreciably to any of these compounds. Neither prestalk nor prespore cells of strain HC91 exhibited a cAMP-induced increase in intracellular cGMP. However, a cGMP response was observed in both prestalk and prespore cells of strain NP368, a cGMP phosphodiesterase deficient mutant. Both cell types exhibited comparable cAMP-mediated light-scattering changes and possessed similar levels of surface cAMP- and folate-binding sites. On the other hand, prestalk cells had at least fourfold higher cAMP phosphodiesterase and folate deaminase activities than prespore cells, and a large fraction of both activities was on the cell surface. Therefore, the greater chemotactic response of prestalk cells to cAMP and folate on agar might be due, in part, to their increased capacity to generate a chemoattractant gradient. Results obtained in this study demonstrate that prestalk and prespore cells separated by this procedure can be used in certain physiological as well as biochemical experiments.


1983 ◽  
Vol 96 (6) ◽  
pp. 1566-1570 ◽  
Author(s):  
B Wurster ◽  
U Butz

Cells of Dictyostelium discoideum respond to extracellular cyclic AMP with marked changes in intracellular cyclic GMP levels and light scattering. In this work, defined temporal increases in cyclic AMP were produced by the continuous addition of cyclic AMP to agitated suspensions of cells; concomitant hydrolysis of cyclic AMP by the cells subsequently established a constant, steady state concentration. The cells responded to the initial increase in extracellular cyclic AMP with a rapid increase in the intracellular cyclic GMP concentration and a rapid decrease in light scattering. At cyclic AMP input rates of 0.5-5 nM X s-1, the fast reactions of cyclic GMP and light scattering had already relaxed while the cyclic AMP concentration in the cell suspension was still increasing. The cells responded to constant concentrations of cyclic AMP with constant elevated cyclic GMP concentrations and constant decreased levels of light scattering. Our results are consistent with the existence of two types of perception systems, one of which adapts to constant stimuli and one of which does not adapt.


FEBS Letters ◽  
1977 ◽  
Vol 79 (2) ◽  
pp. 331-336 ◽  
Author(s):  
José M. Mato ◽  
Peter J.M. Van Haastert ◽  
Frans A. Krens ◽  
Els H. Rhunsburger ◽  
Fred C.P.M. Dobbe ◽  
...  

1991 ◽  
Vol 99 (1) ◽  
pp. 187-191
Author(s):  
S. Menz ◽  
J. Bumann ◽  
E. Jaworski ◽  
D. Malchow

Previous work has shown that streamer F (stmF) mutants of Dictyostelium discoideum exhibit prolonged chemotactic elongation in aggregation fields. The mutants carry an altered structural gene for cyclic GMP phosphodiesterase resulting in low activities of this enzyme. Chemotactic stimulation by cyclic AMP causes a rapid transient increase in the cyclic GMP concentration followed by association of myosin heavy chains with the cytoskeleton. Both events persist several times longer in stmF mutants than in the parental strain, indicating that the change in association of myosin with the cytoskeleton is transmitted directly or indirectly by cyclic GMP. We measured the cyclic AMP-induced Ca2+ uptake with a Ca(2+)-sensitive electrode and found that Ca2+ uptake was prolonged in stmF mutants but not in the parental strain. The G alpha 2 mutant strain HC33 (fgdA), devoid of InsP3 release and receptor/guanylate cyclase coupling, lacked Ca2+ uptake. However, the latter response and cyclic GMP formation were normal in the signal-relay mutant strain agip 53 where cyclic AMP-stimulated cyclic AMP synthesis is absent. LiCl, which inhibits InsP3 formation in Dictyostelium, blocked Ca2+ uptake in a dose-dependent manner. The data indicate that the receptor-mediated Ca2+ uptake depends on the InsP3 pathway and is regulated by cyclic GMP. The rate of Ca2+ uptake was correlated in time with the association of myosin with the cytoskeleton, suggesting that Ca2+ uptake is involved in the motility response of the cells.


1986 ◽  
Vol 6 (7) ◽  
pp. 2402-2408
Author(s):  
B Haribabu ◽  
R P Dottin

Extracellular molecules regulate gene expression in eucaryotes. Exogenous cyclic AMP (cAMP) affects the expression of a large number of developmentally regulated genes in Dictyostelium discoideum. Here, we determine the specificity of the receptor(s) which mediates gene expression by using analogs of cAMP. The order of potency with which these analogs affect the expression of specific genes is consistent with the specificity of their binding to a cell surface receptor and is distinct from their affinity for intracellular cAMP-dependent protein kinase. Dose-response curves with cAMP and adenosine 3',5'-monophosphorothioate, a nonhydrolyzable analog, revealed that the requirement for high concentrations of exogenous cAMP for regulating gene expression is due to the rapid degradation of cAMP by phosphodiesterase. The addition of low concentrations of cAMP (100 nM) or analogs in pulses also regulates gene expression. Both the genes that are positively regulated by exogenous cAMP and the discoidin gene, which is negatively regulated, respond to cAMP analogs to the same degree. Genes expressed in prespore or prestalk cells are also similarly regulated. These data suggest that the effects are mediated through the same receptor. The specificity of this receptor is indistinguishable from that of the well-characterized cell surface cAMP receptor.


Development ◽  
1983 ◽  
Vol 78 (1) ◽  
pp. 229-248
Author(s):  
Charles John McDonald ◽  
Jeffrey Sampson

At concentrations greater than 10 µg ml−1 tunicamycin inhibited the incorporation of [3H]mannose into glycoproteins during the early phase of development in Dictyostelium discoideum, however, total protein synthesis was unaffected. Tunicamycin also interfered with the normal process of aggregation. In its presence small aggregates were observed at the time of normal aggregation, but amoebae failed to aggregate completely and subsequent development was inhibited. Inhibition of normal aggregation by tunicamycin was found to be reversible. The appearance of cell-associated and secreted cyclic AMP phosphodiesterase and cell-surface contact sites A was prevented by tunicamycin but cell surface cyclic AMP receptor activity developed normally in its presence. Tunicamycin also prevented amoebae from acquiring the ability to chemotact toward cyclic AMP. Addition of exogenous cyclic AMP phosphodiesterase restored the ability of amoebae to chemotact toward cyclic AMP in the presence of tunicamycin. Our data suggest that the primary block in aggregation caused by tunicamycin results from the inhibition of expression of active cyclic AMP phosphodiesterase.


1993 ◽  
Vol 10 (6) ◽  
pp. 991-996 ◽  
Author(s):  
Ari Sitaramayya ◽  
Lorraine Lombardi ◽  
Alexander Margulis

AbstractDopamine is a major neurotransmitter and neuromodulator in vertebrate retina. Although its pharmacological and physiological actions are well understood, the biochemical mechanisms of its signal transduction are less clear. Acting via D1 receptors, dopamine was shown to increase cyclic AMP levels in intact retina and to activate adenylate cyclase in retinal homogenates. The action via activation of D2 receptors is controversial: it was reported to decrease cyclic AMP levels in intact retina but inhibition of cyclase could not be demonstrated in retinal homogenates; also it was reported to activate rod outer segment cyclic GMP phosphodiesterase in vitro but did not decrease cyclic GMP levels in aspartate-treated retinas. We made an attempt to fractionate bovine retinal membranes and to investigate the effects of dopamine, via Dl and D2 receptors, on the synthesis and hydrolysis of cyclic AMP and cyclic GMP. Activation of cyclic AMP synthesis was noted in all fractions, but no effects were evident on cyclic nucleotide hydrolysis or cyclic GMP synthesis in any fraction. Also, D2 agonist did not inhibit cyclic AMP synthesis. These observations suggest that D2 receptors may not be directly coupled to cyclic nucleotide metabolizing enzymes in bovine retina.


1995 ◽  
Vol 15 (6) ◽  
pp. 445-462 ◽  
Author(s):  
Peter C. Newell

This review is concerned with the roles of cyclic GMP and Ca2+ ions in signal transduction for chemotaxis of Dictyostelium. These molecules are involved in signalling between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Evidence is presented for uptake and/or eflux of Ca2+ being regulated by cyclic GMP. The link between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants whose primary defect is in the structural gene for the cyclic GMP-specific phosphodiesterase. This mutation causes the mutants to produce an abnormally prolonged peak of cyclic GMP accumulation in response to stimulation with the chemoattractant cyclic AMP. The production and relay of cyclic AMP signals is normal in these mutants, but certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and regulation of both myosin heavy and light chain phosphorylation. These changes can be correlated with changes in the shape of the amoebae after chemotactic stimulation. Other mutants in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses.A model is described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by regulating phosphorylation of the myosin heavy and light chain kinases.


1984 ◽  
Vol 101 (1) ◽  
pp. 136-146 ◽  
Author(s):  
Michael Brenner ◽  
Stephen D. Thoms

Sign in / Sign up

Export Citation Format

Share Document