Spike-shaped oscillations in the absence of measurable changes in cyclic AMP concentration in a mutant of Dictyostelium discoideum
Periodic activities of Dictyostelium discoideum cells involve two types of oscillations, spike-shaped and sinusoidal. Spike-shaped oscillations are accompanied by the periodic synthesis and release of cyclic AMP, and cyclic AMP-activated cyclic AMP synthesis is believed to control these oscillations. Experiments described here call into question the importance of cyclic AMP in spike-shaped oscillations. Cell suspensions of strain agip43, an aggregation-deficient mutant of D. discoideum, displayed spike-shaped oscillations in light scattering with period lengths about 1.5 times larger than those of the parent strain. These oscillations were not accompanied by measurable oscillations of cyclic AMP and cyclic GMP. Applied cyclic AMP pulses elicited increases of two- to threefold in the cyclic AMP level and increases of seven- to ninefold in the cyclic GMP concentration. Cyclic AMP additions caused phase shifts in the oscillations of agip43 cells, suggesting that cyclic AMP receptors at the cell surface communicate with the oscillator. We interpret these results in terms of an oscillator not based on cyclic AMP. This oscillator should be coupled to the reaction system involving cyclic AMP synthesis and release. The latter can operate in an oscillatory manner in the parent strain Ax2 but not in mutant agip43.