Nerve growth in a small applied electric field and the effects of pharmacological agents on rate and orientation

1990 ◽  
Vol 95 (4) ◽  
pp. 617-622
Author(s):  
C.D. McCaig

The rate of growth and orientation of embryonic Xenopus nerves exposed to pharmacological agents, to an applied electric field or to both simultaneously were studied. The adenyl cyclase activator forskolin (100 microM) induced a threefold increase in the rate of elongation, as did an electric field alone. Together, their effect in augmenting rate of growth was additive, but only at a concentration of 50 microM forskolin. The normal pattern of faster growth towards cathode than anode was not present in nerves treated with the lectin concanavalin A, which also inhibits normal turning behaviour towards the cathode. Nerve orientation towards the cathode and augmented rates of growth were found in the presence of forskolin or ganglioside GM1. It is suggested that a combined approach of drug treatment and an applied electric field may be useful in promoting nerve regeneration.

1990 ◽  
Vol 95 (4) ◽  
pp. 605-615
Author(s):  
C.D. McCaig

Nerve branching is controlled by intrinsic and extrinsic cues, one of which may be a small applied electric field. Lateral processes were induced by passing current through a micropipette placed at 90 degrees to the shaft of a developing nerve. The appearance of processes was a polarised event with a large majority arising from the cathodal facing side of nerves. Whilst an electric field alone may promote branching, the presence of dimethyl sulfoxide (DMSO) or the ganglioside GM1 enhanced branching of developing nerves. It is likely that an applied electric field promotes microtubule disassembly locally along the neurite shaft and that this can lead to a polarised rearrangement of the neuronal cyto-skeleton. It is suggested that the use of an applied electric field in conjunction with these pharmacological agents might enhance nerve regeneration in vivo.


1989 ◽  
Vol 93 (4) ◽  
pp. 723-730
Author(s):  
C.D. McCaig

The mechanism of nerve orientation in an applied electric field has been investigated using a number of pharmacological agents. Galvanotropism may depend on redistribution within the plasma membrane of integral membrane proteins (IMP); blocking this with concanavalin A inhibited orientation. Orientation may depend also on an influx of Ca2+; Co2+ and La3+ blockade of calcium channels inhibited turning in an electric field. Organic blockers of calcium channels did not influence orientation, suggesting that L-type Ca2+ channels may not be present at the growth cone. Procedures that may induce asymmetric entry of Ca2+ on the anodal side of cells caused a reversal of normal galvanotropism, with growth directed towards the anode. This may implicate local levels of cytoplasmic Ca2+ within the growth cone in controlling turning behaviour. An asymmetric distribution of filopodia precedes and may predict the direction of nerve growth in an electric field. Various pharmacological agents perturbed the distribution of filopodia in such a way that this did not reflect subsequent orientation. It is suggested that, normally, local Ca2+ increases and an asymmetry of filopodia operate together in determining orientation, but that filopodial activity is subordinate to and can be overriden by local Ca2+ levels in the growth cone. In addition, two of the drug treatments markedly increased rates of nerve growth, which may be of importance in nerve regeneration.


1989 ◽  
Vol 93 (4) ◽  
pp. 715-721
Author(s):  
C.D. McCaig

Nerve orientation may involve a biasing of the distribution of tension at the growth cone. Chemical and electrical guidance cues cause more filopodia to appear on one side of the growth cone and this may determine turning behaviour. In a small applied electric field, filopodia predominate on the cathodal side of the growth cone and nerves turn towards the cathode. Removing all filopodia by treatment with cytochalasin D did not prevent nerves from continued slow growth and nerves still oriented towards the cathode. It is concluded that nerves can perform some types of orienting behaviour in the complete absence of filopodia.


1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

2012 ◽  
Vol 15 (2-3) ◽  
pp. 127-139
Author(s):  
Tung Tran Anh ◽  
Laurent Berquez ◽  
Laurent Boudou ◽  
Juan Martinez-Vega ◽  
Alain Lacarnoy

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Q. Li ◽  
Y. H. Chen

A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r−1∕2 and a pair of oscillatory singularities r−1∕2±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.


The Analyst ◽  
2020 ◽  
Vol 145 (6) ◽  
pp. 2412-2419 ◽  
Author(s):  
Rachel N. Deraney ◽  
Lindsay Schneider ◽  
Anubhav Tripathi

NA extraction and purification utilitzing a microfluidic chip with applied electric field to induce electroosmotic flow opposite the magnetic NA-bound bead mix.


2020 ◽  
Vol 10 (6) ◽  
pp. 780-787
Author(s):  
Hongyue Gao ◽  
Suna Li ◽  
Jicheng Liu ◽  
Wen Zhou ◽  
Fan Xu ◽  
...  

In this paper, we studied the holographic properties of liquid crystal (LC) thin film doped with carbon dots (CDs) which can be used as real-time holographic display screen. The maximum value of diffraction efficiency can reach up to 30% by using a low applied electric field 0.2 V/μm. Holograms in the LC film can be dynamically formed and self-erased. The hologram build-up time and the hologram self-erasure time in the material is fast enough to realize video refresh rate. In addition, the forming process of hologram was studied. The holographic diffraction efficiency was measured depending on the intensity of recording light, applied electric field, the intensity of readout light, and readout light polarization direction. Triple enhancement of the diffraction efficiency value by the modulation of voltage under the condition of low recording energy is presented. Therefore, we develop an easy way to obtain real-time dynamic holographic red, green and blue displays with high diffraction efficiency, which allow the LC film doped with CDs to be used as a holographic 3D display screen.


Sign in / Sign up

Export Citation Format

Share Document