Memoirs: The Muscles of the Adult Honey-bee (Apis mellifera L.)

1928 ◽  
Vol s2-71 (284) ◽  
pp. 563-651
Author(s):  
GUY D. MORISON

1. The entire musculature of the alimentary canal is described in gross and in histological detail. The development of the muscle is considered. The innervation is described, likewise the tracheation and its relation to muscular activity and the bloodstream. 2. The heart is described with a detailed histological account of its muscle-fibres. Its tracheation is described and its apparent lack of innervation is discussed. 3. The ‘alary’ muscles of the dorsal diaphragm are described with a detailed account of their histology, innervation, and tracheation. 4. The ventral diaphragm is described as well as the histology, innervation, and tracheation of its muscle-fibres. The course of blood and physiological questions connected with it receive discussion. 5. The muscles of the reproductive organs of drone, queen, and worker are described with particular reference to the histology, innervation, tracheation, and physiology of their fibres. 6. The indirect muscles of the wings (fibrous muscle) have their histology, innervation, and tracheation described in detail. The method of contraction of the entire muscles and of the individual fibres and fibrils is discussed. The sarcosomes are described with their physiological significance to contraction. 7. The attachment of all the types of muscle found in the bee is described in histological detail. Different opinions of muscle attachment to chitin are summarized. 8. Throughout the paper, histological measurements are given for the various types of muscle-fibres and their nuclei in the three castes of bee. Since in the three castes the histological appearance is so similar for each type of muscle, the illustrations have been limited to portions of the muscles of worker bees.

2021 ◽  
Vol 9 (5) ◽  
pp. 1087
Author(s):  
Loreley Castelli ◽  
María Laura Genchi García ◽  
Anne Dalmon ◽  
Daniela Arredondo ◽  
Karina Antúnez ◽  
...  

RNA viruses play a significant role in the current high losses of pollinators. Although many studies have focused on the epidemiology of western honey bee (Apis mellifera) viruses at the colony level, the dynamics of virus infection within colonies remains poorly explored. In this study, the two main variants of the ubiquitous honey bee virus DWV as well as three major honey bee viruses (SBV, ABPV and BQCV) were analyzed from Varroa-destructor-parasitized pupae. More precisely, RT-qPCR was used to quantify and compare virus genome copies across honey bee pupae at the individual and subfamily levels (i.e., patrilines, sharing the same mother queen but with different drones as fathers). Additionally, virus genome copies were compared in cells parasitized by reproducing and non-reproducing mite foundresses to assess the role of this vector. Only DWV was detected in the samples, and the two variants of this virus significantly differed when comparing the sampling period, colonies and patrilines. Moreover, DWV-A and DWV-B exhibited different infection patterns, reflecting contrasting dynamics. Altogether, these results provide new insight into honey bee diseases and stress the need for more studies about the mechanisms of intra-colonial disease variation in social insects.


1958 ◽  
Vol s3-99 (48) ◽  
pp. 469-473
Author(s):  
J. C. GEORGE ◽  
K. S. SCARIA

Certain dehydrogenases in the breast muscle of the pigeon and fowl and the leg muscle of the fowl and frog were studied histochemically by the use of 2:3:5: triphenyl tetrazolium chloride. The dehydrogenase activity was found to have a relationship with the colour and the mitochondrial content of the individual muscle fibres. In the pigeon breast muscle, however, the broad white fibres did not show the presence of any of the enzymes studied. It is therefore concluded that these fibres in the pigeon breast muscle are a unique system in which none of the oxidative processes concerned takes place; they cannot be considered as analogous to the white fibres of the other muscles studied.


2015 ◽  
Vol 59 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Krystyna Czekońska ◽  
Bożena Chuda-Mickiewicz

Abstract The effectiveness of two methods of collecting semen from honeybee Apis mellifera drones was compared, and the reasons for problems with ejaculating semen were analysed. Among 275 drones, 100 were stimulated to release semen using a manual method, 100 with the use of chloroform, and from 75 drones the reproductive organs were dissected for analysis and evaluation. It was found that the principal causes of problems that drones had with ejaculating their semen were anatomical changes or a delay in the development of the mucus glands. It was also found that the method employing chloroform was less efficient in the first phase of eversion of the endophallus, compared with the manual method. The method with the use of chloroform allows the determination of the proportion of drones, which do not evert the endophallus because of poor or delayed development of mucus glands, as well as the proportion of drones which evert the organ, but do not ejaculate semen because of the absence of semen in the seminal vesicles.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Surman Arya ◽  
Suneel Kumar Singh

The digestive and tracheal system of a poultry shaft louse, Menopon gallinae (Phthiraptera: Amblycera) has been studied in greater details. Alimentary canal of louse was dissected out along with crop under stereozoom binocular microscope. Entire alimentary canal of M. gallinae was found more or less straight and has three basic parts (fore-gut, mid-gut and hind-gut) while crop-teeth was present in the crop. The posterior end of crop contains 20-30 well developed crop-teeth arranged in a single arced plate, in comb-like fashion. Mid-gut was found as simple tube and contributes nearly one half of the total length, while the hind-gut was marked by the opening of Malpighian tubules in alimentary canal. The heart of M. gallinae is of simplest kind, one chambered bulbous structure having three pairs of laterally placed ostia and supported by four pairs of alary muscles. In the tracheal system there were seven pairs of spiracles occurred on the terga of M. gallinae. The first pair of spiracle was found located close to legs while remaining six abdominal spiracles occur from segment 3rd to 8th. The degree of tracheation of various visceral organs has also been noted.


The Copley Medal is awarded to Professor A. F. Huxley, F. R. S. A. F. Huxley has made outstanding contributions to our knowledge of the nerve impulse and of the mechanism by which muscle fibres are caused to contract. Jointly with Hodgkin, he introduced the powerful method of intracellular recording from nerve cells and showed that during the propagation of an impulse the mem­brane potential reverses its sign, and does not simply fall towards zero as had been widely believed. This work - interrupted by the 1939-45 war, but later resumed - led to the proposal that the impulse arises from a transient influx of sodium ions through the axon membrane. The ‘ionic theory’ of nervous conduction was then established by a series of convincing experiments and calculations for which Huxley later shared the Nobel Prize. Huxley next turned his attention to the mechanism of muscular contraction. He equipped himself for this purpose by inventing a new type of interference microscope. In experiments on living isolated muscle fibres, Huxley showed that contraction is accompanied by a shortening of the isotropic band of each sarco­mere, while the remaining portion (the anisotropic band) retains approximately constant length. His findings complemented the important ultrastructural studies of H. E. Huxley and led them both to propose a ‘sliding filament’ mechanism as the basis of muscular motion. During further microscopic observations on the living muscle fibre, A. F. Huxley produced most striking evidence on the way in which an excitatory potential change of the surface membrane is communicated, through local tubular channels, to the interior of the fibre where it activates the contractile elements. In his most recent work, A. F. Huxley has continued to develop his single-fibre technique to resolve even finer details of the dynamic changes which occur during muscular activity. His work is characterized by a rare combination of profound theoretical insight, mathematical skill and superb technical mastery, all of which has enabled him to select problems of first-rate importance and to pursue them with outstanding success.


1930 ◽  
Vol s2-73 (291) ◽  
pp. 365-392
Author(s):  
S. B. SETNA

Experimental. 1. The contraction of the adductor-muscle which follows stimulation of the palial nerve is preceded by a marked contraction of the ctenidial axis, so that the gill contracts before the adductor-muscle becomes active. This movement of the ctenidium is abolished if the main branchial nerve is cut near its origin. 2. The gills of Pecten possess a neuromuscular mechanism which is to some extent independent of the rest of the body, so that excised gills when stimulated react in the same way as an attached gill. 3. The lamellae of the gill possess two distinct types of movement. (a) When the surface of the gill is stimulated by contact with a glass rod or by carmine particles, the frontal surfaces of the two lamellae approach each other; the movement very often being executed by the lamella which is not actually being stimulated. The lateral extent of these movements (concertina movements) is roughly proportional to the intensity of the stimulus. Such movements normally appear to transfer the bulk of the material on to the mantle. Separation of the main branchial nerve abolishes these movements. (b) Each principal filament is capable of moving the ordinary filaments to which it is attached. This movement (flapping movement) is due to the movements of the interfilamentar junctions which alternatively move up and down at right angles to their length. This motion is independent of the branchial nerve and can be produced by direct stimulation of very tiny pieces of the individual filaments. 4. The significance of gill movements to feeding habits is discussed. The course of food particles depends on the nature of the stimuli affecting the gill. Histological. 5. The ctenidial axis and the principal filaments have a stratum of anastomosing nerve-cells which appear to form a true nerve-net comparable to that of the mantle. 6. The gill receives nerve-fibres from two sources, the brain and the visceral ganglion. The subsidiary branchial nerve is a structure hitherto unknown in the molluscan gill; so far its function is unknown. Each gill has four main longitudinal nerve-trunks. 7. The osphradium of the gill has a much more extensive distribution than has hitherto been supposed. 8. Two sets of muscles exist at the base of the gill-filaments, and these are responsible for movements of the lamellae. The muscle-fibres are non-striated. 9. The principal filaments are connected to the ordinary filaments by processes containing true muscle-cells, and by these cells movements of the filaments are effected.


1980 ◽  
Vol 88 (1) ◽  
pp. 249-258
Author(s):  
CHRISTINE E. PHILLIPS

The anatomical and physiological organization of the locust metathoracic flexor tibiae was examined by a combination of intracellular recording and electron microscopy. Nine excitatory motor neurones, three fast, three intermediate and three slow innervate the muscle; each is uniquely identifiable using a combination of physiological response and soma location. A simple spatial distribution of inputs to the muscle from the individual motor neurones was not found. Individual muscle fibres responded to as many as seven of the motor neurones in various combinations. The muscle fibres are heterogeneous, ranging from slow (tonic) to fast (phasic) in a continuum from predominantly phasic proximally to tonicdistally. This is demonstrated by contraction and relaxation rates to directand indirect stimulation, as well as contraction elicited by action potentials in a single flexor motor neurone. The fast and slow contractile properties of the muscle fibres are matched by appropriate ultrastructures. Such a high degree of complexity of neuromuscular innervation as that found in the metathoracic flexor tibiae has not previously been described for an arthropod muscle.


Sign in / Sign up

Export Citation Format

Share Document