scholarly journals Locomotion Energetics of the Ghost Crab: II. Mechanics of the Centre of Mass During Walking and Running

1987 ◽  
Vol 130 (1) ◽  
pp. 155-174 ◽  
Author(s):  
REINHARD BLICKHAN ◽  
ROBERT J. FULL

Terrestrial locomotion involving appendages has evolved independently in vertebrates and arthropods. Differences in the mechanical design of the locomotor apparatus could impose constraints on the energetics of locomotion. The mechanical energy fluctuations of the centre of mass of an arthropod, the ghost crab Ocypode quadrata (Fabricius), were examined by integrating the ground reaction forces exerted during sideways locomotion. Crabs used a pendulum-type energy exchange mechanism during walking, analogous to an egg rolling end over end, with the same effectiveness as birds and mammals. Moreover, ghost crabs were found to have two running gaits. A switch from a slow to a fast run occurred at the same speed and stride frequency predicted for the trot-gallop transition of a quadrupedal mammal of the same body mass. In addition, the mass-specific mechanical energy developed over a unit distance was independent of speed and was within the limits measured for birds and mammals. Despite the obvious differences in mechanical design between crabs and mammals, energy-conserving mechanisms and the efficiency of locomotion were remarkably similar. These similarities may result from the fact that the muscles that generate forces during terrestrial locomotion have relatively conservative mechanical and energetic properties.

1990 ◽  
Vol 148 (1) ◽  
pp. 129-146 ◽  
Author(s):  
R. J. Full ◽  
M. S. Tu

Six-legged pedestrians, cockroaches, use a running gait during locomotion. The gait was defined by measuring ground reaction forces and mechanical energy fluctuations of the center of mass in Blaberus discoidalis (Serville) as they travelled over a miniature force platform. These six-legged animals produce horizontal and vertical ground-reaction patterns of force similar to those found in two-, four- and eight-legged runners. Lateral forces were less than half the vertical force fluctuations. At speeds between 0.08 and 0.66 ms-1, horizontal kinetic and gravitational potential energy changes were in phase. This pattern of energy fluctuation characterizes the bouncing gaits used by other animals that run. Blaberus discoidalis attained a maximum sustainable stride frequency of 13 Hz at 0.35 ms-1, the same speed and frequency predicted for a mammal of the same mass. Despite differences in body form, the mass-specific energy used to move the center of mass a given distance (0.9 J kg-1m-1) was the same for cockroaches, ghost crabs, mammals, and birds. Similarities in force production, stride frequency and mechanical energy production during locomotion suggest that there may be common design constraints in terrestrial locomotion which scale with body mass and are relatively independent of body form, leg number and skeletal type.


1982 ◽  
Vol 97 (1) ◽  
pp. 57-66 ◽  
Author(s):  
N. C. Heglund ◽  
M. A. Fedak ◽  
C. R. Taylor ◽  
G. A. Cavagna

This is the final paper in or series examining the link between the energetics and mechanics of terrestrial locomotion. In this paper the kinetic energy of the limbs and body relative to the centre of mass (EKE, tot of paper two) is combined with the potential plus kinetic energy of the centre of mass (ECM, tot of paper three) to obtain the total mechanical energy (excluding elastic energy) of an animal during constant average-speed locomotion. The minimum mass-specific power required of the muscles and tendons to maintain the observed oscillations in total energy, Etot/Mb, can be described by one equation: Etot/Mb = 0.478. vg 1.53 + 0.685. vg + 0.072 where Etot/Mb is in W kg-1 and vg is in m s-1. This equation is independent of body size, applying equally as well to a chipmunk or a quail as to a horse or an ostrich. In marked contrast, the metabolic energy consumed by each gram of an animal as it moves along the ground at a constant speed increases linearly with speed and is proportional to Mb-0.3. Thus, we have found that each gram of tissue of a 30 g quail or chipmunk running at 3 m s-1 consumes metabolic energy at a rate about 15 times that of a 100 kg ostrich, horse or human running at the same speed while their muscles are performing work at the same rate. Our measurements demonstrate the importance of storage and recovery of elastic energy in larger animals, but they cannot confirm or exclude the possibility of elastic storage of energy in small animals. It seems clear that the rate at which animals consume energy during locomotion cannot be explained by assuming a constant efficiency between the energy consumed and the mechanical work performed by the muscles. It is suggested that the intrinsic velocity of shortening of the active muscle motor units (which is related to the rate of cycling of the cross bridges between actin and myosin) and the rate at which the muscles are turned on and off are the most important factors in determining the metabolic cost of constant-speed locomotion. Faster motor units are recruited as animals increase speed, and equivalent muscles of small animals have faster fibres than those of larger animals. Also, the muscles are turned on and off more quickly as an animal increases speed, and at the same speed a small animal will be turning muscles on and off at a much higher rate. These suggestions are testable, and future studies should determine if they are correct.


1991 ◽  
Vol 156 (1) ◽  
pp. 215-231 ◽  
Author(s):  
R. J. Full ◽  
M. S. Tu

To examine the effects of variation in body form on the mechanics of terrestrial locomotion, we used a miniature force platform to measure the ground reaction forces of the smallest and, relative to its mass, one of the fastest invertebrates ever studied, the American cockroach Periplaneta americana (mass = 0.83 g). From 0.44-1.0 ms-1, P. americana used an alternating tripod stepping pattern. Fluctuations in gravitational potential energy and horizontal kinetic energy of the center of mass were nearly in phase, characteristic of a running or bouncing gait. Aerial phases were observed as vertical ground reaction force approached zero at speeds above 1 ms-1. At the highest speeds (1.0-1.5 ms-1 or 50 body lengths per second), P. americana switched to quadrupedal and bipedal running. Stride frequency approached the wing beat frequencies used during flight (27 Hz). High speeds were attained by increasing stride length, whereas stride frequency showed little increase with speed. The mechanical power used to accelerate the center of mass increased curvilinearly with speed. The mass-specific mechanical energy used to move the center of mass a given distance was similar to that measured for animals five orders of magnitude larger in mass, but was only one-hundredth of the metabolic cost.


2011 ◽  
Vol 366 (1570) ◽  
pp. 1516-1529 ◽  
Author(s):  
Maarten F. Bobbert ◽  
L. J. Richard Casius

The purpose of this study was to understand how humans regulate their ‘leg stiffness’ in hopping, and to determine whether this regulation is intended to minimize energy expenditure. ‘Leg stiffness’ is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m −1 kg −1 at 26 cm to 150 N m −1 kg −1 at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM( t ) as only input. Correspondence between simulated hops and experimental hops was poor when STIM( t ) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height.


Author(s):  
Siyuan Yang ◽  
Tera D. Douglas ◽  
Ryan Ruia ◽  
Scott Medler

Ghost crabs are the fastest and most aerobically fit of the land crabs. The exceptional locomotory capacity of these invertebrate athletes seemingly depends upon effective coupling between the cardiovascular system and skeletal muscles, but how these systems are integrated has not been well defined. In the current study, we investigated the relationship between aerobic muscle fibers within the skeletal muscles used to power running and the blood vessels supplying these muscles. We used histochemical staining techniques to identify aerobic versus glycolytic fibers and to characterize membrane invaginations within the aerobic fibers. We also determined how the diameters of these two fiber types scale as a function of body size, across two orders of magnitude. Vascular casts were made of the blood vessels perfusing these muscles and special attention was given to small, capillary-like vessels supplying the fibers. Finally, we injected fluorescent microspheres into the hearts of living crabs and tracked their deposition into different muscle regions to quantify relative hemolymph flow to metabolic fiber types. Collectively, these analyses demonstrate that ghost crab muscles are endowed with an extensive arterial hemolymph supply. Moreover, the hemolymph flow to aerobic fibers is significantly greater than to glycolytic fibers within the same muscles. Aerobic fibers are increasingly subdivided by membrane invaginations as crabs increase in size, keeping the diffusive distances relatively constant. These findings support a functional coupling between a well-developed circulatory system and metabolically active muscle fibers in these invertebrates.


1994 ◽  
Vol 192 (1) ◽  
pp. 119-127 ◽  
Author(s):  
C Zollikofer

Stepping pattern geometry and walking kinematics of individual foragers of Cataglyphis fortis (Formicidae: Hymenoptera) were recorded during outward and homeward trips to and from a food source. While returning homewards, the animals were supplied with food items of defined mass (load ratio from 1.3 to 6.4) and volume. Under the influence of load, the temporal interleg coordination pattern was maintained (alternating tripod gait), but the spatial tripod pattern was modified. Tripod deformation was found to be proportional to the displacement of the centre of mass induced by the load. Stride length and stride frequency were not altered at any speed when animals carried loads compared with trips without a load. However, in order to maintain stability, mean stride length, mean speed and mean stride frequency were reduced while carrying loads.


2000 ◽  
pp. 35-41 ◽  
Author(s):  
AE Minetti ◽  
LP Ardigo ◽  
F Saibene ◽  
S Ferrero ◽  
A Sartorio

OBJECTIVE: The aim of the present study was to evaluate the energy cost and the mechanical work of locomotion in a group of adults with childhood-onset GH deficiency (GHD). SUBJECTS: Eight males with childhood-onset GHD (mean age+/-s.d.: 31.7+/-3.6 years; mean height: 145.1+/-6.7cm) and six age-, sex- and exercise-matched normal subjects were studied. DESIGN: GHD patients and healthy controls were requested to walk and run in the speed range of 2-11km h(-1). For each condition, simultaneous mechanical and metabolic measurements were taken. METHODS: Oxygen consumption, and mechanical internal and external work of locomotion were evaluated with standard open-circuit respirometry and three-dimensional motion analysis respectively. RESULTS: External work was not significantly different between GHD patients and healthy controls, while internal work was higher for patients at all speeds. In walking, the relationships between both the mechanical energy recovery and the metabolic cost with speed were shifted towards lower speeds in patients. As a consequence, the optimal speed of walking, i.e. the speed at which the cost of locomotion is minimum, was lower for GHD patients. Stride frequency was significantly higher (11.2-11.3%) for GHD patients at all speeds of walking and running. GHD patients were unable to run at speeds higher than 8km h(-1) for the time needed to reach a metabolic steady state. CONCLUSION: It appears that both the mechanics and energetics of locomotion in short-statured adults with childhood-onset GHD are not strikingly different from those of healthy controls, thus demonstrating a substantial 'normality' in this group of GHD patients at metabolically attainable speeds. The 'harmonic' body structure and the adherence to allometric transformations in these patients do not exclude the possibility of a different metabolic role of GH in normally statured adults with childhood-onset GHD and in those with acquired GHD, taking into account the well recognized heterogeneity of the adult GHD syndrome.


2014 ◽  
Vol 44 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Wiesław Chwała ◽  
Andrzej Klimek ◽  
Wacław Mirek

Abstract The aim of the study was to assess energy cost and total external work (total energy) depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers. The study involved 12 competitive race walkers aged years with 6 to 20 years of experience, who achieved a national or international sports level. Their aerobic endurance was determined by means of a direct method involving an incremental exercise test on the treadmill. The participants performed three tests walking each time with one of the three speeds according to the same protocol: an 8-minute walk with at steady speed was followed by a recovery phase until the oxygen debt was repaid. To measure exercise energy cost, an indirect method based on the volume of oxygen uptake was employed. The gait of the participants was recorded using the 3D Vicon opto-electronic motion capture system. Values of changes in potential energy and total kinetic energy in a gate cycle were determined based on vertical displacements of the centre of mass. Changes in mechanical energy amounted to the value of total external work of muscles needed to accelerate and lift the centre of mass during a normalised gait cycle. The values of average energy cost and of total external work standardised to body mass and distance covered calculated for technical speed, threshold and racing speeds turned out to be statistically significant. The total energy cost ranged from 51.2 kJ.m-1 during walking at technical speed to 78.3 kJ.m-1 during walking at a racing speed. Regardless of the type of speed, the total external work of muscles accounted for around 25% of total energy cost in race walking. Total external work mainly increased because of changes in the resultant kinetic energy of the centre of mass movement.


Sign in / Sign up

Export Citation Format

Share Document