Aerodynamic characteristics of the wings and body of a dragonfly

1996 ◽  
Vol 199 (2) ◽  
pp. 281-294 ◽  
Author(s):  
M Okamoto ◽  
K Yasuda ◽  
A Azuma

The aerodynamic characteristics of the wings and body of a dragonfly and of artificial wing models were studied by conducting two types of wind-tunnel tests and a number of free-flight tests of gliders made using dragonfly wings. The results were consistent between these different tests. The effects of camber, thickness, sharpness of the leading edge and surface roughness on the aerodynamic characteristics of the wings were characterized in the flow field with Reynolds numbers (Re) as low as 103 to 104.

2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


Author(s):  
D. B. M. Jouini ◽  
S. A. Sjolander ◽  
S. H. Moustapha

The paper presents detailed mid-span experimental results from two transonic linear turbine cascades. The blades for the two cascades were designed for the same service and differ mainly in their leading-edge geometries. One of the goals of the study was investigate the influence of the leading-edge metal angle on the sensitivity of the blade to positive off-design incidence. Measurements were made for incidence values of −10.0°, 0.0°, +4.5°, +10.0°, and +14.5° relative to design incidence. The exit Mach numbers varied roughly from 0.5 to 1.2 and the Reynolds numbers from about 4×105 to 106. The measurements include the midspan losses, blade loadings and base pressures. In addition, the axial-velocity-density ratio (AVDR) was extracted for each operating point The AVDR was found to vary from about 0.98 at −10.0° of incidence to about 1.27 at +14.5°. Thus, the data set also provides some evidence of the influence AVDR on axial turbine blade performance. Detailed experimental results for turbine blade performance at off-design incidence are very scarce in the open literature, particularly for transonic conditions. Among other things, the present results are intended to expand the database available in the open literature. To this end, the key aerodynamic results are presented in tabular form, along with the detailed geometry of the cascades. The results could be used in the development of new or improved correlations for use in the early stages of design. They could also be used to evaluate the ability of current CFD codes to capture reliably the variation in losses and other aerodynamic quantities with variations in blade incidence.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 553 ◽  
Author(s):  
Taimur Ali Shams ◽  
Syed Irtiza Ali Shah ◽  
Ali Javed ◽  
Syed Hossein Raza Hamdani

Airfoil selection procedure, wind tunnel testing and an implementation of 6-DOF model on flying wing micro aerial vehicle (FWMAV) has been proposed in this research. The selection procedure of airfoil has been developed by considering parameters related to aerodynamic efficiency and flight stability. Airfoil aerodynamic parameters have been calculated using a potential flow solver for ten candidate airfoils. Eppler-387 proved to be the most efficient reflexed airfoil and therefore was selected for fabrication and further flight testing of vehicle. Elevon control surfaces have been designed and evaluated for longitudinal and lateral control. The vehicle was fabricated using hot wire machine with EPP styrofoam of density 50 Kg/ m 3 . Static aerodynamic coefficients were evaluated using wind tunnel tests conducted at cruise velocity of 20 m/s for varying angles of attack. Rate derivatives and elevon control derivatives have also been calculated. Equations of motion for FWMAV have been written in a body axis system yielding a 6-DOF model. It was found during flight tests that vehicle conducted coordinated turns with no appreciable adverse yaw. Since FWMAV was not designed with a vertical stabilizer and rudder control surface, directional stability was therefore augmented through winglets and high wing leading edge sweep. Major problems encountered during flight tests were related to left rolling tendency. The left roll tendency was found inherent to clockwise rotating propeller as ‘P’ factor, gyroscopic precession, torque effect and spiraling slipstream. To achieve successful flights, many actions were required including removal of excessive play from elevon control rods, active actuation of control surfaces, enhanced launch speed during take off, and increased throttle control during initial phase of flight. FWMAV flew many successful stable flights in which intended mission profile was accomplished, thereby validating the proposed airfoil selection procedure, modeling technique and proposed design.


2016 ◽  
Vol 20 (6) ◽  
pp. 843-864 ◽  
Author(s):  
XX Cheng ◽  
L Zhao ◽  
YJ Ge ◽  
R Dong ◽  
C Demartino

Adding vertical ribs is recognized as a useful practice for reducing wind effects on cooling towers. However, ribs are rarely used on cooling towers in China since Chinese Codes are insufficient to support the design of rough-walled cooling towers, and an “understanding” hampers the use of ribs, which thinks that increased surface roughness has limited effects on the maximum internal forces that control the structural design. To this end, wind tunnel model tests in both uniform flow field with negligible free-stream turbulence and atmospheric boundary layer (ABL) turbulent flow field are carried out in this article to meticulously study and quantify the surface roughness effects on both static and dynamic wind loads for the purpose of improving Chinese Codes first. Subsequently, a further step is taken to obtain wind effects on a full-scale large cooling tower at a high Re, which are employed to validate the results obtained in the wind tunnel. Finally, the veracity of the model test results is discussed by investigating the Reynolds number (Re) effects on them. It has been proved that the model test results for atmospheric boundary layer flow field are all obtained in the range of Re-independence and the conclusions drawn from model tests and full-scale measurements basically agree, so most model test results presented in this article can be directly applied to the full-scale condition without corrections.


2017 ◽  
Vol 121 (1245) ◽  
pp. 1711-1732 ◽  
Author(s):  
R. Kalimuthu ◽  
R. C. Mehta ◽  
E. Rathakrishnan

ABSTRACTA forward spike attached to a blunt body significantly alters its flow field characteristics and influences aerodynamic characteristics at hypersonic flow due to formation of separated flow and re-circulation region around the spiked body. An experimental investigation was performed to measure aerodynamic forces for spikes blunt bodies with a conical, hemispherical and flat-face spike at Mach 6 and at an angle-of-attack range from 0° to 8° and length-to-diameterL/Dratio of spike varies from 0.5 to 2.0, whereLis the length of the spike andDis diameter of blunt body. The shape of the leading edge of the spiked blunt body reveals different types of flow field features in the formation of a shock wave, shear layer, flow separation, re-circulation region and re-attachment shock. They are analysed with the help of schlieren pictures. The shock distance ahead of the hemisphere and the flat-face spike is compared with the analytical solution and is showing satisfactory agreement with the schlieren pictures. The influence of geometrical parameters of the spike, the shape of the spike tip and angle-of-attack on the aerodynamic coefficients are investigated by measuring aerodynamic forces in a hypersonic wind tunnel. It is found that a maximum reduction of drag of about 77% was found for hemisphere spike ofL/D= 2.0 at zero angle-of-attack. Consideration for compensation of increased pitching moment is required to stabilise the aerodynamic forces.


1996 ◽  
Vol 118 (4) ◽  
pp. 217-221 ◽  
Author(s):  
D. M. Somers ◽  
J. L. Tangler

The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil’s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 × 106. For the design Reynolds number of 1.5 × 106, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil’s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.


Sign in / Sign up

Export Citation Format

Share Document