Sprawling locomotion in the lizard Sceloporus clarkii: quantitative kinematics of a walking trot

1997 ◽  
Vol 200 (4) ◽  
pp. 753-765 ◽  
Author(s):  
S Reilly ◽  
M Delancey

Although the hindlimb is widely considered to provide the propulsive force in lizard locomotion, no study to date has investigated the kinematic patterns of the lizard hindlimb during running for more than one stride for a single individual. The quantitative kinematics of the hindlimb, pelvis and backbone are described here for two individuals of the lizard Sceloporus clarkii using a fast walking trot on a treadmill moving at a constant speed of 0.833 m s-1. Pelvic rotation, femoral retraction, knee flexion and posterior movement of the foot all begin before the foot hits the substratum and, thus, there is a terminal portion of the swing phase during which the limb is retracting. Pelvic rotation (to the opposite side), femoral protraction and knee flexion all begin before the foot leaves the substratum. The foot, however, continues to move posteriorly into the early swing phase. Thus, limb retraction and protraction movements do not directly correlate with footfall phases. Axial bending involves a rough standing wave with two nodes, one centered on each limb girdle. In Sceloporus clarkii, the foot clearly remains lateral to the knee and, thus, has a more sprawling posture than that of any other vertebrate studied to date. Therefore, the generalization that the 'lacertilian' foot passes under the knee joint is no longer supported. The kinematics of sprawling locomotion in Sceloporus clarkii are compared and contrasted with the general understanding of lizard locomotion based on qualitative work to date. Comparisons with other tetrapods reveal a fundamental functional dichotomy in hindlimb retraction mechanics in salamanders and mammals versus lizards that may be related to a key morphological difference in the saurian caudifemoralis muscle.

Medicina ◽  
2020 ◽  
Vol 56 (9) ◽  
pp. 437
Author(s):  
Bungo Ebihara ◽  
Takashi Fukaya ◽  
Hirotaka Mutsuzaki

Background and objectives: Decreased knee flexion in the swing phase of gait can be one of the causes of falls in severe knee osteoarthritis (OA). The quadriceps tendon is one of the causes of knee flexion limitation; however, it is unclear whether the stiffness of the quadriceps tendon affects the maximum knee flexion angle in the swing phase. The purpose of this study was to clarify the relationship between quadriceps tendon stiffness and maximum knee flexion angle in the swing phase of gait in patients with severe knee OA. Materials and Methods: This study was conducted from August 2018 to January 2020. Thirty patients with severe knee OA (median age 75.0 (interquartile range 67.5–76.0) years, Kellgren–Lawrence grade: 3 or 4) were evaluated. Quadriceps tendon stiffness was measured using Young’s modulus by ShearWave Elastography. The measurements were taken with the patient in the supine position with the knee bent at 60° in a relaxed state. A three-dimensional motion analysis system measured the maximum knee flexion angle in the swing phase. The measurements were taken at a self-selected gait speed. The motion analysis system also measured gait speed, step length, and cadence. Multiple regression analysis by the stepwise method was performed with maximum knee flexion angle in the swing phase as the dependent variable. Results: Multiple regression analysis identified quadriceps tendon Young’s modulus (standardized partial regression coefficients [β] = −0.410; p = 0.013) and gait speed (β = 0.433; p = 0.009) as independent variables for maximum knee flexion angle in the swing phase (adjusted coefficient of determination = 0.509; p < 0.001). Conclusions: Quadriceps tendon Young’s modulus is a predictor of the maximum knee flexion angle. Clinically, decreasing Young’s modulus may help to increase the maximum knee flexion angle in the swing phase in those with severe knee OA.


2020 ◽  
Vol 81 ◽  
pp. 27-32 ◽  
Author(s):  
Yusuke Sekiguchi ◽  
Dai Owaki ◽  
Keita Honda ◽  
Kenichiro Fukushi ◽  
Noriyoshi Hiroi ◽  
...  

Author(s):  
Ashutosh Tiwari ◽  
Abhijeet Kujur ◽  
Jyoti Kumar ◽  
Deepak Joshi

Abstract Transfemoral amputee often encounters reduced toe clearance resulting in trip-related falls. Swing phase joint angles have been shown to influence the toe clearance therefore, training intervention that targets shaping the swing phase joint angles can potentially enhance toe clearance. The focus of this study was to investigate the effect of the shift in the location of the center of pressure (CoP) during heel strike on modulation of the swing phase joint angles in able-bodied participants (n=6) and transfemoral amputees (n=3). We first developed a real-time CoP-based visual feedback system such that participants could shift the CoP during treadmill walking. Next, the kinematic data were collected during two different walking sessions- baseline (without feedback) and feedback (shifting the CoP anteriorly/posteriorly at heel strike to match the target CoP location). Primary swing phase joint angle adaptations were observed with feedback such that during the mid-swing phase, posterior CoP shift feedback significantly increases (p&lt;0.05) the average hip and knee flexion angle by 11.55 degrees and 11.86 degrees respectively in amputees, whereas a significant increase (p&lt;0.05) in ankle dorsiflexion, hip and knee flexion angle by 3.60 degrees, 3.22 degrees, and 1.27 degrees respectively compared to baseline was observed in able-bodied participants. Moreover, an opposite kinematic adaptation was seen during anterior CoP shift feedback. Overall, results confirm a direct correlation between the CoP shift and the modulation in the swing phase lower limb joint angles.


1997 ◽  
Vol 5 (2) ◽  
pp. 176-177 ◽  
Author(s):  
Stephen J. Piazza ◽  
Scott L. Delp
Keyword(s):  

2014 ◽  
Vol 40 (2) ◽  
pp. 277-286 ◽  
Author(s):  
Thomas Schmalz ◽  
Eva Pröbsting ◽  
Roland Auberger ◽  
Gordon Siewert

Background: The microprocessor-controlled leg orthosis C-Brace enables patients with paretic or paralysed lower limb muscles to use dampened knee flexion under weight-bearing and speed-adapted control of the swing phase. Objectives: The objective of the present study was to investigate the new technical functions of the C-Brace orthosis, based on biomechanical parameters. Study design: The study enrolled six patients. The C-Brace orthosis is compared with conventional leg orthoses (four stance control orthoses, two locked knee–ankle–foot orthoses) using biomechanical parameters of level walking, descending ramps and descending stairs. Methods: Ground reaction forces, joint moments and kinematic parameters were measured for level walking as well as ascending and descending ramps and stairs. Results: With the C-Brace, a nearly natural stance phase knee flexion was measured during level walking (mean value 11° ± 5.6°). The maximum swing phase knee flexion angle of the C-Brace approached the normal value of 65° more closely than the stance control orthoses (66° ± 8.5° vs 74° ± 6.4°). No significant differences in the joint moments were found between the C-Brace and stance control orthosis conditions. In contrast to the conventional orthoses, all patients were able to ambulate ramps and stairs using a step-over-step technique with C-Brace (flexion angle 64.6° ± 8.2° and 70.5° ± 12.4°). Conclusion: The results show that the functions of the C-Brace for situation-dependent knee flexion under weight bearing have been used by patients with a high level of confidence. Clinical relevance The functional benefits of the C-Brace in comparison with the conventional orthotic mechanisms could be demonstrated most clearly for descending ramps and stairs. The C-Brace orthosis is able to combine improved orthotic function with sustained orthotic safety.


2012 ◽  
Vol 9 (3) ◽  
pp. 303-316 ◽  
Author(s):  
M. S. Huq ◽  
M. O. Tokhi

Spring brake orthosis (SBO) concentrates purely on the knee to generate the swing phase of the paraplegic gait with the required hip flexion occurring passively as a consequence of the ipsilateral knee flexion, generated by releasing the torsion spring mounted at the knee joint. Electrical stimulation then drives the knee back to full extension, as well as restores the spring potential energy. In this paper, genetic algorithm (GA) and its variant multi-objective GA (MOGA) is used to perform the search operation for the ‘best’ spring parameters for the SBO spring mounted on an average sized subject simulated in the sagittal plane. Conventional torsion spring is tested against constant torque type spring in terms of swing duration as, based on first principles, it is hypothesized that constant torque spring would be able to produce slower SBO swing phase as might be preferred in assisted paraplegic gait. In line with the hypothesis, it is found that it is not possible to delay the occurrence of the flexion peak of the SBO swing phase further than its occurrence in the natural gait. The use of conventional torsion spring causes the swing knee flexion peak to appear rather faster than that of the natural gait, resulting in a potentially faster swing phase and hence gait cycle. The constant torque type spring on the other hand is able to stretch duration of the swing phase to some extent, rendering it the preferable spring type in SBO.


1993 ◽  
Vol 70 (3) ◽  
pp. 1102-1114 ◽  
Author(s):  
J. A. Buford ◽  
J. L. Smith

1. Four cats were trained to walk backward (BWD) and forward (FWD) on a motorized treadmill. Mechanical (taps) or electrical (pulses) stimuli were applied to the dorsal or ventral aspect of the hind paw during swing or stance. Hindlimb kinematic data, obtained by digitizing 16-mm high-speed film, were synchronized with computer-analyzed electromyograms (EMG) recorded from anterior biceps femoris (ABF), vastus lateralis (VL), lateral gastrocnemius (LG), tibialis anterior (TA), and semitendinosus (ST). Responses to taps and pulses, as well as the modulation in cutaneous reflex sensitivity to pulses, were described for both walking directions and stimulus locations. 2. After dorsal taps that obstructed FWD swing, the hindlimb initially drew back away from the obstacle with knee flexion and ST activation, ankle extension with TA suppression and LG activation, and hip extension with ABF facilitation. Next, the limb was raised over the obstacle with resumed TA activity and enhanced knee and ankle flexion, and then compensatory knee and ankle extension positioned the limb for the ensuing stance phase. 3. For ventral taps that obstructed BWD swing, the initial response also tended to draw the limb away from the obstacle with hip and ankle flexion and TA facilitation and reduced knee flexion with weak VL facilitation and suppression of ST activity. Next, ST activity resumed as knee and ankle flexion raised the limb over the obstacle, and then compensatory extension completed the swing phase for BWD walking. Thus the initial kinematic and EMG responses to obstacles were opposite for BWD versus FWD swing, and these responses were consistent with active avoidance of the obstacles. Responses during BWD walking were subtle, however, compared with those for FWD. 4. After nonobstructing taps (ventral FWD, dorsal BWD), ST and TA activation and knee and ankle flexion were coincident, demonstrating that the aforementioned differences in responses to obstructing obstacles were not simply location dependent. Regardless of the direction of walking or the location of stimulation, taps applied during stance had little immediate kinematic effect, but the subsequent swing phase was usually exaggerated, as if the response was programmed to avoid any lingering obstacle. 5. Electrical pulses did not elicit the full-blown responses typically evoked by taps. The sequencing in activation of ST and TA characteristic after laps was absent after pulses, and there were rarely dramatic kinematic responses to pulses like those easily elicited by taps. There were, in fact, few differences in responses to electrical stimulation for BWD versus FWD walking.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 96 (3) ◽  
pp. 511-517 ◽  
Author(s):  
Dong-Wook Rha ◽  
Katelyn Cahill-Rowley ◽  
Jeffrey Young ◽  
Leslie Torburn ◽  
Katherine Stephenson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document