Honeybee flight muscle phosphoglucose isomerase: matching enzyme capacities to flux requirements at a near-equilibrium reaction

1997 ◽  
Vol 200 (8) ◽  
pp. 1247-1254 ◽  
Author(s):  
J Staples ◽  
R Suarez

In honeybee flight muscle, there are close matches between physiological flux rates and the maximal activities (Vmax; determined using crude homogenates) of key enzymes catalyzing non-equilibrium reactions in carbohydrate oxidation. In contrast, phosphoglucose isomerase (PGI), which catalyzes a reaction believed to be close to equilibrium, occurs at Vmax values greatly in excess of glycolytic flux rates. In this study, we measure the Vmax of flight muscle PGI, the kinetic parameters of the purified enzyme, the apparent equilibrium constants for the reaction and the tissue concentrations of substrate and product. Using the Haldane equation, we estimate that the forward flux capacity (Vf) for PGI required to achieve physiological glycolytic flux rates is between 800 and 1070 units ml-1 cell water, approximately 45­60 % of the empirically measured Vmax of 1770 units ml-1 cell water at optimal pH (8.0) and low ionic strength (no added KCl). When measured at physiological pH (7.0) and ionic strength (120 mmol l-1 KCl) with saturating levels of substrate, PGI activity is 1130 units ml-1 cell water, a value close to the calculated Vf. These results reveal a very close match between predicted and measured PGI flux capacities, and support the concept of an economical design of muscle metabolism in systems working at very high metabolic rates.

2015 ◽  
Vol 39 (5) ◽  
pp. 1387-1394 ◽  
Author(s):  
Giuliano Marchi ◽  
Cesar Crispim Vilar ◽  
George O’Connor ◽  
Marx Leandro Naves Silva

ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation), considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.


2019 ◽  
Vol 64 (10) ◽  
pp. 1091-1104
Author(s):  
O. N. Karaseva ◽  
L. I. Ivanova ◽  
L. Z. Lakshtanov

Strontium adsorption has been studied by the method of acid-base potentiometric titrations at three different temperatures: 25, 50, 75C. The effect of pH, ionic strength, sorbate/sorbent ratio, and temperature on adsorption was investigated. Experimental data were simulated using two various surface complexation models, with two different electrostatic descriptions of the interface: the constant capacitance model (CCM) and the triple-layer model (TLM). Although the both models used are able to account for the acid-base reactions and surface complexation of strontium on birnessite, we consider that the TLM is more applicable for a description of heterophaseous system H+ MnOH Sr2+. Under conditions of low ionic strength and negatively charged surface, Sr2+ ions compete with the electrolyte ions and form outer-sphere complexes along with inner-sphere complexes. Consequently, using the CCM for description of strontium adsorption data could be mathematically satisfactory, but physically senseless. The equilibrium model proposed here consists of the complexes of inner (MnOHSr2+, MnOSr+, MnOSrOH0) and outer types ([MnO Sr2+]+). The corresponding intrinsic equilibrium constants of the formation of these surface complexes were calculated for 25,50, and 75C.


Author(s):  
J.S. Wall ◽  
V. Maridiyan ◽  
S. Tumminia ◽  
J. Hairifeld ◽  
M. Boublik

The high contrast in the dark-field mode of dedicated STEM, specimen deposition by the wet film technique and low radiation dose (1 e/Å2) at -160°C make it possible to obtain high resolution images of unstained freeze-dried macromolecules with minimal structural distortion. Since the image intensity is directly related to the local projected mass of the specimen it became feasible to determine the molecular mass and mass distribution within individual macromolecules and from these data to calculate the linear density (M/L) and the radii of gyration.2 This parameter (RQ), reflecting the three-dimensional structure of the macromolecular particles in solution, has been applied to monitor the conformational transitions in E. coli 16S and 23S ribosomal RNAs in solutions of various ionic strength.In spite of the differences in mass (550 kD and 1050 kD, respectively), both 16S and 23S RNA appear equally sensitive to changes in buffer conditions. In deionized water or conditions of extremely low ionic strength both appear as filamentous structures (Fig. la and 2a, respectively) possessing a major backbone with protruding branches which are more frequent and more complex in 23S RNA (Fig. 2a).


1960 ◽  
Vol 4 (01) ◽  
pp. 031-044
Author(s):  
George Y. Shinowara ◽  
E. Mary Ruth

SummaryFour primary fractions comprising at least 97 per cent of the plasma proteins have been critically appraised for evidence of denaturation arising from a low temperature—low ionic strength fractionation system. The results in addition to those referable to the recovery of mass and biological activity include the following: The high solubilities of these fractions at pH 7.3 and low ionic strengths; the compatibility of the electrophoretic and ultracentrifugal data of the individual fractions with those of the original plasma; and the recovery of hemoglobin, not hematin, in fraction III obtained from specimens contaminated with this pigment. However, the most significant evidence for minimum alterations of native proteins was that the S20, w and the electrophoretic mobility data on the physically recombined fractions were identical to those found on whole plasma.The fractionation procedure examined here quantitatively isolates fibrinogen, prothrombin and antithrombin in primary fractions. Results have been obtained demonstrating its significance in other biological systems. These include the following: The finding of 5 S20, w classes in the 4 primary fractions; the occurrence of more than 90 per cent of the plasma gamma globulins in fraction III; the 98 per cent pure albumin in fraction IV; and, finally, the high concentration of beta lipoproteins in fraction II.


1981 ◽  
Vol 193 (1) ◽  
pp. 375-378 ◽  
Author(s):  
A R Ashton ◽  
L E Anderson

Plastocyanin is soluble at high concentrations (greater than 3 M) of (NH4)2SO4 but under these conditions will adsorb tightly to unsubstituted Sepharose beads. This observation was utilized to purify plastocyanin from pea (Pisum sativum) in two chromatographic steps. Sepharose-bound plastocyanin was eluted with low-ionic-strength buffer and subsequently purified to homogeneity by DEAE-cellulose chromatography.


1990 ◽  
Vol 265 (8) ◽  
pp. 4177-4180
Author(s):  
M H Walter ◽  
E M Westbrook ◽  
S Tykodi ◽  
A M Uhm ◽  
E Margoliash

1969 ◽  
Vol 244 (3) ◽  
pp. 648-657 ◽  
Author(s):  
M Bárány ◽  
G Bailin ◽  
K Bárány

Author(s):  
Elizabeth A. Bagshaw ◽  
Jemma L. Wadham ◽  
Martyn Tranter ◽  
Alexander D. Beaton ◽  
Jon R. Hawkings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document