scholarly journals Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake

2001 ◽  
Vol 204 (4) ◽  
pp. 777-784 ◽  
Author(s):  
C. Selman ◽  
S. Lumsden ◽  
L. Bunger ◽  
W.G. Hill ◽  
J.R. Speakman

We investigated the relationship between resting metabolic rate (RMR) and various morphological parameters in non-breeding mice, selected for high and low food intake corrected for body mass. RMR was measured at 30 degrees C, and mice were subsequently killed and dissected into 19 body components. High-food-intake mice had significantly greater body masses and a significantly elevated RMR compared with the low-intake mice. Data pooled across strains indicated that body mass, sex and strain together explained over 56 % of the observed variation in RMR. The effects of strain and sex on RMR and tissue morphology were removed, and three separate statistical analyses to investigate the relationship between RMR and organ morphology were performed: (i) employing individual regression analysis with each tissue component as a separate predictor against RMR; (ii) individual regression analysis with residual organ mass against residual RMR (i.e. with strain, sex and body mass effects removed); and (iii) pooling of some organ masses into functional groupings to reduce the number of predictors. Liver mass was the most significant morphological trait linked to differences in RMR. Small intestine length was significantly greater in the high-intake line; however, no difference was observed between strains in the dry mass of this organ, and there was no evidence to associate variability in the mass of the alimentary tract with variability in RMR. The effects of strain on RMR independent of the effect on body mass were consistent with the anticipated effect from the strain differences in the size of the liver.

2009 ◽  
Vol 55 (4) ◽  
pp. 249-257 ◽  
Author(s):  
Zhijun Zhao ◽  
Jing Cao ◽  
Ye Tian ◽  
Ruirui Wang ◽  
Guiying Wang

Abstract When small animals are faced with an unpredictable food supply, they can adapt by altering different components of their energy budget such as energy intake, metabolic rate, rate of non-shivering thermogenesis (NST) or behaviour. The present study examined the effect of stochastic food deprivation (FD) on body mass, food intake, resting metabolic rate (RMR), NST and behaviour in male Swiss mice. During a period of 4 weeks’ FD, animals were fed ad libitum for a randomly assigned 4 days each week, but were deprived of food for the other 3 days. The results showed that body mass significantly dropped on FD days compared to controls. Food intake of FD mice increased significantly on ad libitum days, ensuring cumulative food intake, final body mass, fat mass, RMR and NST did not differ significantly from controls. Moreover, gastrointestinal tract mass increased in FD mice, but digestibility decreased. In general, activity was higher on deprived days, and feeding behaviour was higher on ad libitum days suggesting that Swiss mice are able to compensate for stochastic FD primarily by increasing food intake on ad libitum days, and not by reducing energy expenditure related to RMR or NST.


2014 ◽  
Author(s):  
Charles Frasier

The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically predicts the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(body mass)b. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that predict BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measurable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidae is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can exactly predict every BMR and mass datum from the BMR and mass data set with no error and thus no unexplained variance. Furthermore MMLE can exactly predict every body mass and length datum from the mass and length data set with no error and thus no unexplained variance. Whether or not MMLE can simultaneously exactly predict an individual animal’s BMR and body mass given its characteristic length awaits analysis of a data set that simultaneously reports all three of these items for individual animals. However for many of the addressed phylogenetic homogeneous groups, MMLE can predict the exponent obtained by regression analysis of the BMR and mass data using the exponent obtained by regression analysis of the mass and length data. This argues that MMLE may be able to accurately simultaneously predict BMR and mass for an individual animal.


2014 ◽  
Author(s):  
Charles Frasier

The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically predicts the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(body mass)b. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that predict BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measurable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidae is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can exactly predict every BMR and mass datum from the BMR and mass data set with no error and thus no unexplained variance. Furthermore MMLE can exactly predict every body mass and length datum from the mass and length data set with no error and thus no unexplained variance. Whether or not MMLE can simultaneously exactly predict an individual animal’s BMR and body mass given its characteristic length awaits analysis of a data set that simultaneously reports all three of these items for individual animals. However for many of the addressed phylogenetic homogeneous groups, MMLE can predict the exponent obtained by regression analysis of the BMR and mass data using the exponent obtained by regression analysis of the mass and length data. This argues that MMLE may be able to accurately simultaneously predict BMR and mass for an individual animal.


2020 ◽  
Vol 70 (2) ◽  
pp. 175-187
Author(s):  
Peng Hong-bi ◽  
Hou Dong-min ◽  
Zhang Di ◽  
Zhu Wan-long

Abstract The metabolic switch hypothesis refers to an ability to adjust metabolic rate. It plays a key role in animals adapted to periods of food shortage, enabling them to “switch down” their resting metabolic rate and to survive and maintain their weight indefinitely on limited rations. The present study investigates the energy strategies of a small mammal in response to food shortages as a function of food restriction, metabolic rate and ambient temperature. We subjected tree shrews (Tupaia belangeri) to food restriction and measured body mass, survival rate, resting metabolic rate, non-shivering thermogenesis and cytochrome c oxidase activity of brown adipose tissue. Cold-exposed animals restricted to 80% of ad libitum food intake had significantly increased resting metabolic rate and non-shivering thermogenesis and decreased body mass and survival rates compared with those kept as control group on the same ood restriction level. Animals classified as having a high resting metabolic rate consumed 30.69% more food than those classified as having a low resting metabolic rate, but showed no differences in body mass or survival when restricted to 80% of ad libitum food intake. These results indicate that tree shrews, known for their relatively high metabolic rates, are sensitive to periods of food restriction, which supports the metabolic switch hypothesis. Our findings are also consistent with the prediction that small mammals with food hoarding behaviors, like tree shrews, may have a lower tolerance for food shortages than non-hoarding species.


Author(s):  
Wan-long Zhu ◽  
Li-xin Chen ◽  
Xue-na Gong ◽  
Hao Zhang

To investigate the relationship between the energy strategies in response to food restriction and the levels of metabolism in small mammals, body mass, resting metabolic rate (RMR), nonshivering thermogenesis (NST) and cytochrome c oxidase (COX) activity were measured in Apodemus chevrieri that were subjected to different levels of food restriction (FR). The results showed that cold-exposed group had significantly increased RMR and NST, but decreased body mass and survival rate after being restricted to 80% of ad libitum food intake compared with their counterparts maintained at room temperature. A. chevrieri with higher RMR consumed higher food intake than individuals with lower RMR, whereas no differences were observed in body mass and survival rate between two groups after being restricted to 80% of ad libitum food intake. The results suggest that A. chevrieri characterized by higher levels of metabolism are sensitive to periods of FR, providing a support for the “metabolism switch hypothesis”.


2014 ◽  
Author(s):  
Charles Frasier

The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically predicts the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(body mass)b. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that predict BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measurable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidae is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can exactly predict every BMR and mass datum from the BMR and mass data set with no error and thus no unexplained variance. Furthermore MMLE can exactly predict every body mass and length datum from the mass and length data set with no error and thus no unexplained variance. Whether or not MMLE can simultaneously exactly predict an individual animal’s BMR and body mass given its characteristic length awaits analysis of a data set that simultaneously reports all three of these items for individual animals. However for many of the addressed phylogenetic homogeneous groups, MMLE can predict the exponent obtained by regression analysis of the BMR and mass data using the exponent obtained by regression analysis of the mass and length data. This argues that MMLE may be able to accurately simultaneously predict BMR and mass for an individual animal.


Author(s):  
Heidi K. Byrne ◽  
Jack H. Wilmore

The present cross-sectional study was designed to investigate the relationship between exercise training and resting metabolic rate (RMR). The focus of this investigation was to compare RMR in aerobically trained (AT), resistance trained (RT), and untrained (UNT) women. Subjects were also classified as highly trained (HT), moderately trained (MT), or untrained (UNT) in order to examine the relationship between RMR and level of training. Sixty-one women between the ages of 18 and 46 years volunteered to serve as subjects in this study. Each subject completed measurements of body composition, maximal oxygen uptake (V̇O2max), and two consecutive measurements of RMR. The data presented show that there was no significant difference in resting metabolic rate between resistance-trained, aerobically trained, and control subjects. However, when grouped by intensity of training, there was a trend for an increased resting metabolic rate (kcal/day) in the highly trained subjects, regardless of mode of training.


2013 ◽  
Vol 82 (5) ◽  
pp. 1009-1020 ◽  
Author(s):  
Lawrence N. Hudson ◽  
Nick J. B. Isaac ◽  
Daniel C. Reuman

Sign in / Sign up

Export Citation Format

Share Document