Visual cues enhance obstacle avoidance in echolocating bats

2021 ◽  
pp. jeb.241968
Author(s):  
Te K. Jones ◽  
Cynthia F. Moss

Studies have shown that bats are capable of using visual information for a variety of purposes, including navigation and foraging, but the relative contributions of visual and auditory modalities in obstacle avoidance has yet to be fully investigated, particularly in laryngeal echolocating bats. A first step requires a characterization of behavioral responses to different combinations of sensory cues. Here we quantify the behavioral responses of the insectivorous big brown bat, Eptesicus fuscus, in an obstacle avoidance task offering different combinations of auditory and visual cues. To do so, we utilize a new method that eliminates the confounds typically associated with testing bat vision and precludes auditory cues. We find that the presence of visual and auditory cues together enhances bats’ avoidance response to obstacles compared to cues requiring either vision or audition alone. Analysis of flight and echolocation behaviors, such as speed and call rate, did not vary significantly under different obstacle conditions, and thus are not informative indicators of a bat's response to obstacle stimulus type. These findings advance the understanding of the relative importance of visual and auditory sensory modalities in guiding obstacle avoidance behaviors.

Author(s):  
Jose Adrian Vega Vermehren ◽  
Cornelia Buehlmann ◽  
Ana Sofia David Fernandes ◽  
Paul Graham

AbstractAnts are excellent navigators taking into account multimodal sensory information as they move through the world. To be able to accurately localise the nest at the end of a foraging journey, visual cues, wind direction and also olfactory cues need to be learnt. Learning walks are performed at the start of an ant’s foraging career or when the appearance of the nest surrounding has changed. We investigated here whether the structure of such learning walks in the desert ant Cataglyphis fortis takes into account wind direction in conjunction with the learning of new visual information. Ants learnt to travel back and forth between their nest and a feeder, and we then introduced a black cylinder near their nest to induce learning walks in regular foragers. By doing this across days with different prevailing wind directions, we were able to probe how ants balance the influence of different sensory modalities. We found that (i) the ants’ outwards headings are influenced by the direction of the wind with their routes deflected in such a way that they will arrive downwind of their nest when homing, (ii) a novel object along the route induces learning walks in experienced ants and (iii) the structure of learning walks is shaped by the wind direction rather than the position of the visual cue.


Author(s):  
Adam F. Werner ◽  
Jamie C. Gorman

Objective This study examines visual, auditory, and the combination of both (bimodal) coupling modes in the performance of a two-person perceptual-motor task, in which one person provides the perceptual inputs and the other the motor inputs. Background Parking a plane or landing a helicopter on a mountain top requires one person to provide motor inputs while another person provides perceptual inputs. Perceptual inputs are communicated either visually, auditorily, or through both cues. Methods One participant drove a remote-controlled car around an obstacle and through a target, while another participant provided auditory, visual, or bimodal cues for steering and acceleration. Difficulty was manipulated using target size. Performance (trial time, path variability), cue rate, and spatial ability were measured. Results Visual coupling outperformed auditory coupling. Bimodal performance was best in the most difficult task condition but also high in the easiest condition. Cue rate predicted performance in all coupling modes. Drivers with lower spatial ability required a faster auditory cue rate, whereas drivers with higher ability performed best with a lower rate. Conclusion Visual cues result in better performance when only one coupling mode is available. As predicted by multiple resource theory, when both cues are available, performance depends more on auditory cueing. In particular, drivers must be able to transform auditory cues into spatial actions. Application Spotters should be trained to provide an appropriate cue rate to match the spatial ability of the driver or pilot. Auditory cues can enhance visual communication when the interpersonal task is visual with spatial outputs.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4374
Author(s):  
Jose Bernardo Martinez ◽  
Hector M. Becerra ◽  
David Gomez-Gutierrez

In this paper, we addressed the problem of controlling the position of a group of unicycle-type robots to follow in formation a time-varying reference avoiding obstacles when needed. We propose a kinematic control scheme that, unlike existing methods, is able to simultaneously solve the both tasks involved in the problem, effectively combining control laws devoted to achieve formation tracking and obstacle avoidance. The main contributions of the paper are twofold: first, the advantages of the proposed approach are not all integrated in existing schemes, ours is fully distributed since the formulation is based on consensus including the leader as part of the formation, scalable for a large number of robots, generic to define a desired formation, and it does not require a global coordinate system or a map of the environment. Second, to the authors’ knowledge, it is the first time that a distributed formation tracking control is combined with obstacle avoidance to solve both tasks simultaneously using a hierarchical scheme, thus guaranteeing continuous robots velocities in spite of activation/deactivation of the obstacle avoidance task, and stability is proven even in the transition of tasks. The effectiveness of the approach is shown through simulations and experiments with real robots.


1976 ◽  
Vol 28 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Philip Merikle

Report of single letters from centrally-fixated, seven-letter, target rows was probed by either auditory or visual cues. The target rows were presented for 100 ms, and the report cues were single digits which indicated the spatial location of a letter. In three separate experiments, report was always better with the auditory cues. The advantage for the auditory cues was maintained both when target rows were masked by a patterned stimulus and when the auditory cues were presented 500 ms later than comparable visual cues. The results indicate that visual cues produce modality-specific interference which operates at a level of processing beyond iconic representation.


Behaviour ◽  
1979 ◽  
Vol 70 (1-2) ◽  
pp. 1-116 ◽  
Author(s):  
I. Bossema

AbstractThe European jay (Garrulus g. glandarius) strongly depends on acorns for food. Many acorns are hoarded enabling the jay to feed upon them at times of the year in which they would otherwise be unavailable. Many of the hoarded acorns germinate and become seedlings so that jays play an important role in the dispersal of acorns and the reproduction of oaks (in this study: Quercus robur, the pedunculate oak). These mutual relationships were analysed both with wild jays in the field (province of Drente, The Netherlands) and with tame birds in confinement. Variation in the composition of the food throughout the year is described quantitatively. Acorns were the stock diet of adults in most months of the year. Leaf-eating caterpillars predominantly occurring on oak were the main food items of nestlings. Acorns formed the bulk of the food of fledglings in June. A high rate of acorn consumption in winter, spring and early summer becomes possible because individual jays hoard several thousands of acorns, mainly in October. In experiments, acorns of pedunculate oak were not preferred over equal sized acorns of sessile oak (which was not found in the study area). Acorns of pedunculate oak were strongly preferred over those of American oak and nuts of hazel and beech. Among acorns of pedunculate oak, ripe, sound, long-slim and big ones were preferred. Jays collect one or more (up to six) acorns per hoarding trip. In the latter case, the first ones are swallowed and the last one is usually carried in the bill. For swallowing the dimensions of the beak imposed a limit on size preference; for bill transport usually the biggest acorn was selected. The greater the number of acorns per trip, the longer was the transportation distance during hoarding. From trip to trip jays dispersed their acorns widely and when several acorns were transported during one trip, these were generally buried at different sites. Burial took place by pushing acorns in the soil and by subsequent hammering and covering. Jays often selected rather open sites, transitions in the vegetation and vertical structures such as saplings and tree trunks, for burial of acorns. In captivity jays also hoarded surplus food. Here, spacing out of burials was also observed; previously used sites usually being avoided. In addition, hiding along substrate edges and near conspicuous objects was observed. Jays tended to hide near sticks presented in a horizontal position rather than near identical ones in vertical position, especially when the colour of the sticks contrasted with the colour of the substrate. Also, rough surfaced substrate was strongly preferred over similar but smooth surfaced substrate. Successful retrieval of and feeding on hoarded acorns were observed in winter even when snow-cover had considerably altered the scenery. No evidence was obtained that acorns could be traced back by smell. Many indications were obtained that visual information from near and far beacons, memorized during hiding, was used in finding acorns. The use of beacons by captive jays was also studied. Experiments led to the conclusion that vertical beacons are more important to retrieving birds than identical horizontal ones. The discrepancy with the jay's preference for horizontal structures during hiding is discussed. Most seedlings emerge in May and June. The distribution pattern of seedlings and bill prints on the shells of their acorns indicated that many seedlings emerged from acorns hidden by jays in the previous autumn. The cotyledons of these plants remain underground and are in excellent condition in spring and early summer. Jays exploited acorns by pulling at the stem of seedlings and then removing the cotyledons. This did not usually damage the plants severely. Jays can find acorns in this situation partly because they remember where they buried acorns. In addition, it was shown that jays select seedlings of oak rather than ones of other species, and that they preferentially inspected those seedlings that were most profitable in terms of cotyledon yield and quality. Experiments uncovered some of the visual cues used in this discrimination. The effects of hoarding on the preservation of acorns were examined in the field and the laboratory. Being buried reduced the chance that acorns were robbed by conspecifics and other acorn feeders. Scatter hoarding did not lead to better protection of buried acorns than larder hoarding, but the spread of risk was better in the former than the latter. It was concluded that the way in which jays hoard acorns increases the chance that they can exploit them later. In addition, the condition of acorns is better preserved by being buried. An analysis was made of the consequences of the jay's behaviour for oaks. The oak does incur certain costs: some of its acorns are eaten by jays during the dispersal and storage phase, and some seedlings are damaged as a consequence of cotyledon removal. However, these costs are outweighed by the benefits the oak receives. Many of its most viable acorns are widely dispersed and buried at sites where the prospects for further development into mature oak are highly favourable. The adaptiveness of the characters involved in preferential feeding on and hoarding of acorns by jays is discussed in relation to several environmental pressures: competition with allied species; food fluctuations in the jay's niche; and food competitors better equipped to break up hard "dry" fruits. Reversely, jays exert several selective pressures which are likely to have evolutionary consequences for oaks, such as the selection of long-slim and large acorns with tight shells. In addition, oak seedlings with a long tap root and tough stem are selected for. Although other factors than mutual selective pressures between the two may have affected the present day fit between jays and oaks it is concluded that several characters of jays and oaks can be considered as co-adapted features of a symbiotic relationship.


Author(s):  
Nada Zwayyid Almutairi ◽  
Eman Salah Ibrahim Rizk

This study explores interactive e-book cues and Information Processing Levels (IPL)’s effectiveness on Learning Retention (LR) and External Cognitive Load (ECL). 117 middle school pupils (MSP) were divided into six experimental groups based on their IPL and cues during the second term of the academic year 2019–2020. Visual Cues (VC)/Audiovisual Cues (VAC) and Auditory Cues (AC)/Audiovisual Cues (VAC) statistically varied in the Ie-book in LR test and ECL scale, same for the average scores when testing the LR in Science for MSP due to the difference between IPL for the DL. There is a statistically significant effect of cue types' interaction in Ie-book with IPL in ECL scale for MSP, at its highest peak in the case of the AVC with DL, followed by the interaction resulting from the VC with DL then AC with SL. Also, cues interaction in Ie-book with IPL immensely affect the LR test for MEP, which is at its highest peak in the case of the AVC with DL. The interactions between (DL–SL) and (AC–VC) seem to equally influence the ELC.


2018 ◽  
Vol 40 (1) ◽  
pp. 93-109
Author(s):  
YI ZHENG ◽  
ARTHUR G. SAMUEL

AbstractIt has been documented that lipreading facilitates the understanding of difficult speech, such as noisy speech and time-compressed speech. However, relatively little work has addressed the role of visual information in perceiving accented speech, another type of difficult speech. In this study, we specifically focus on accented word recognition. One hundred forty-two native English speakers made lexical decision judgments on English words or nonwords produced by speakers with Mandarin Chinese accents. The stimuli were presented as either as videos that were of a relatively far speaker or as videos in which we zoomed in on the speaker’s head. Consistent with studies of degraded speech, listeners were more accurate at recognizing accented words when they saw lip movements from the closer apparent distance. The effect of apparent distance tended to be larger under nonoptimal conditions: when stimuli were nonwords than words, and when stimuli were produced by a speaker who had a relatively strong accent. However, we did not find any influence of listeners’ prior experience with Chinese accented speech, suggesting that cross-talker generalization is limited. The current study provides practical suggestions for effective communication between native and nonnative speakers: visual information is useful, and it is more useful in some circumstances than others.


2013 ◽  
Vol 756-759 ◽  
pp. 372-375
Author(s):  
Hong Bin Tian

In order to increase the movement capability of the robotic visual system in three-dimension space, the paper designs an obstacle-avoidance algorithm based on robotic movement visual by effectively processing the visual information colleted by the robotics. This paper establishes a structural model of coordination control system. The obstacles can be effectively identified and avoided by the obstacle-avoidance theory in the robotics coordination operation. The mathematical model of the obstacle-avoidance algorithm can predict the locations of the obstacles. The experiment proves the proposed algorithm can avoid the obstacles in three-dimension space and the accuracy is very high.


Sign in / Sign up

Export Citation Format

Share Document