scholarly journals In the field: an interview with Glenn Tattersall

2021 ◽  
Vol 224 (18) ◽  

Glenn Tattersall is a Professor at Brock University, Canada, where he investigates the mechanisms of animal adaptations to extreme environments. After his undergraduate degree in 1994 at the University of Guelph, Canada, he completed his PhD in Comparative Physiology at the University of Cambridge, UK, with Bob Boutilier, before undertaking postdoctoral research at NEOMED College of Medicine, USA, and Kent State University, USA, with Steve Wood, and at University of British Columbia, Canada, with Bill Milsom. Tattersall talks about his experiences using a thermal imaging camera in South Africa, the Galapagos Islands, Scotland and Brazil.

Author(s):  
Douglass Taber

Richard J. K. Taylor of the University of York has developed (Angew. Chem. Int. Ed. 2008, 47, 1935) the diasteroselective intramolecular Michael cyclization of phosphonates such as 2. Quenching of the cyclized product with paraformaldehyde delivered ( + )-Paeonilactone B 3. Roberto Fernández de la Pradilla of the CSIC, Madrid established (Tetrahedron Lett. 2008, 49, 4167) the diastereoselective intramolecular hetero Michael addition of alcohols to enantiomerically-pure acyclic sulfoxides such as 4 to give the allylic sulfoxide 5. Mislow-Evans rearrangement converted 5 into 6, the enantiomerically-pure core of Ethyl Deoxymonate B 7. The ellagitannins, represented by 10, are single atropisomers around the biphenyl linkage. David R. Spring of the University of Cambridge found (Organic Lett. 2008, 10, 2593) that the chiral constraint of the carbohydrate backbone of 9 directed the absolute sense of the oxidative coupling of the mixed cuprate derived from 9, leading to Sanguiin H-5 10 with high diastereomeric control. A key challenge in the synthesis of the solandelactones, exemplified by 14, is the stereocontrolled construction of the unsaturated eight-membered ring lactone. James D. White of Oregon State University found (J. Org. Chem. 2008, 73, 4139) an elegant solution to this problem, by exposure of the cyclic carbonate 11 to the Petasis reagent, to give 12. Subsequent Claisen rearrangement delivered the eight-membered ring lactone, at the same time installing the ring alkene of Solandelactone E 14. AD-mix usually proceeds with only modest enantiocontrol with terminal alkenes. None the less, Ian Paterson, also of the University of Cambridge, observed (Angew. Chem. Int. Ed. 2008, 47, 3016, Angew. Chem. Int. Ed. 2008, 47, 3021) that bis-dihydroxylation of the diene 17 proceeded to give, after acid-mediated cyclization, the bis-spiro ketal core 18 of Spirastrellolide A Methyl Ester 19 with high diastereocontrol.


Author(s):  
Douglass F. Taber

Several overviews of flow chemistry appeared recently. Katherine S. Elvira and Andrew J. deMello of ETH Zürich wrote (Nature Chem. 2013, 5, 905) on micro­fluidic reactor technology. D. Tyler McQuade of Florida State University and the Max Planck Institute Mühlenberg reviewed (J. Org. Chem. 2013, 78, 6384) applications and equipment. Jun-ichi Yoshida of Kyoto University focused (Chem. Commun. 2013, 49, 9896) on transformations that cannot be effected under batch condi­tions. Detlev Belder of the Universität Leipzig reported (Chem. Commun. 2013, 49, 11644) flow reactions coupled to subsequent micropreparative separations. Leroy Cronin of the University of Glasgow described (Chem. Sci. 2013, 4, 3099) combin­ing 3D printing of an apparatus and liquid handling for convenient chemical synthe­sis and purification. Many of the reactions of organic synthesis have now been adapted to flow con­ditions. We will highlight those transformations that incorporate particularly useful features. One of those is convenient handling of gaseous reagents. C. Oliver Kappe of the Karl-Franzens-University Graz generated (Angew. Chem. Int. Ed. 2013, 52, 10241) diimide in situ to reduce 1 to 2. David J. Cole-Hamilton immobilized (Angew. Chem. Int. Ed. 2013, 52, 9805) Ru DuPHOS on a heteropoly acid support, allowing the flow hydrogenation of neat 3 to 4 in high ee. Steven V. Ley of the University of Cambridge added (Org. Process Res. Dev. 2013, 17, 1183) ammonia to 5 to give the thiourea 6. Alain Favre-Réguillon of the Conservatoire National des Arts et Métiers used (Org. Lett. 2013, 15, 5978) oxygen to directly oxidize the aldehyde 7 to the car­boxylic acid 8. Professor Kappe showed (J. Org. Chem. 2013, 78, 10567) that supercritical ace­tonitrile directly converted an acid 9 to the nitrile 10. Hisao Yoshida of Nagoya University added (Chem. Commun. 2013, 49, 3793) acetonitrile to nitrobenzene 11 to give the para isomer 12 with high regioselectively. Kristin E. Price of Pfizer Groton coupled (Org. Lett. 2013, 15, 4342) 13 to 14 to give 15 with very low loading of the Pd catalyst. Andrew Livingston of Imperial College demonstrated (Org. Process Res. Dev. 2013, 17, 967) the utility of nanofiltration under flow conditions to minimize Pd levels in a Heck product.


2009 ◽  
Vol 20 (1) ◽  
pp. 91 ◽  
Author(s):  
Gad Fischer ◽  
Robert G. Gilbert

Ian Gordon Ross (1926?2006) was educated at the University of Sydney (BSc 1943?1946, MSc 1947?1949) and University College London (PhD 1949?1952), did postdoctoral research at Florida State University (1953?1954), and was a staff member at the University of Sydney, 1954?1967. In 1968, he moved to the Australian National University (ANU) as Professor of Chemistry, where he also became Dean of Science (1973), Deputy Vice-Chancellor (1977) and Pro-Vice-Chancellor (Special Projects) (1989?1990). He was instrumental in setting up Anutech, the commercial arm of the University. He was a driving force behind the establishment of undergraduate and postgraduate engineering at the ANU. His research centred on electronic spectroscopy of pi systems.


Author(s):  
Allison K. Griffith ◽  
Tristan H. Lambert

The α-C–H functionalization of piperidine catalyzed by tantalum complex 1 to pro­duce amine 2 was developed (Org. Lett. 2013, 15, 2182) by Laurel L. Schafer at the University of British Columbia. An asymmetric diamination of diene 3 with diaziri­dine reagent 4 under palladium catalysis to furnish cyclic sulfamide 5 was developed (Org. Lett. 2013, 15, 796) by Yian Shi at Colorado State University. Enantioenriched β-fluoropiperdine 8 was prepared (Angew. Chem. Int. Ed. 2013, 52, 2469) via amino­fluorocyclization of 6 with hypervalent iodide 7, as reported by Cristina Nevado at the University of Zurich. Erick M. Carreira at ETH Zürich disclosed (J. Am. Chem. Soc. 2013, 135, 6814) a ruthenium-catalyzed hydrocarbamoylation of allylic formamide 9 to yield pyrrolidone 10. Hans-Günther Schmalz at the University of Köln disclosed (Angew. Chem. Int. Ed. 2013, 52, 1576) an asymmetric hydrocyanation of styrene 11 with Ni(cod)₂ and phosphine–phosphite ligand 12 to yield exclusively the branched cyanide 13. A simi­lar transformation of styrene 11 to the hydroxycarbonylated product 15 was catalyzed (Chem. Commun. 2013, 49, 3306) by palladium complex 14, as reported by Matthew L. Clarke at the University of St Andrews. Feng-Ling Qing at the Chinese Academy of Sciences found (Angew. Chem. Int. Ed. 2013, 52, 2198) that the hydrotrifluoromethylation of unactivated alkene 16 to 17 was catalyzed by silver nitrate. The same transformation was also reported (J. Am.Chem. Soc. 2013, 135, 2505) by Véronique Gouverneur at the University of Oxford using a ruthenium photocatalyst and the Umemoto reagent 18. Clark R. Landis at the University of Wisconsin, Madison reported (Angew. Chem. Int. Ed. 2013, 52, 1564) a one-pot asymmetric hydroformylation using 21 followed by Wittig olefination to transform alkene 19 into the γ-chiral α,β-unsaturated carbonyl compound 20. Debabrata Mati at the Indian Institute of Technology Bombay found (J. Am. Chem. Soc. 2013, 135, 3355) that alkene 22 could be nitrated stereoselectively with silver nitrite and TEMPO to form alkene 23. Damian W. Young at the Broad Institute disclosed (Org. Lett. 2013, 15, 1218) that a macrocyclic vinylsiloxane 24, which was synthesized via an E-selective ring clos­ing metathesis reaction, could be functionalized to make either E- or Z-alkenes, 25 and 26.


Author(s):  
Douglass Taber

The power of catalytic C-H functionalization is illustrated by the elegant synthesis of rhazinicine 3 devised (Angew. Chem. Int. Ed. 2008, 47, 3004) by Matthew J. Gaunt of the University of Cambridge. The key step in the synthesis was the oxidative cyclization of 1 to 2. Although 1 has many C-H sites, the Pd catalyst selected for the α position of the pyrrole, leading, after intramolecular Heck addition and β-hydride elimination, to the alkene 2. Reduction and macrolactamization completed the synthesis of 3. Hongbin Zhai of the Shanghai Institute of Organic Chemistry and Zhong Li of East China University of Science and Technology prepared (Organic Lett. 2008, 10, 2457) the analgesic (-)-9- epi -pentazocine 8 from the amino ester 4, itself available from D-tyrosine. In the conversion of 5 to 6, the (i -PrO)2 Ti formed a ring, leading to 6 as a single diastereomer and geometric isomer. HBr then effected both deprotection of the methyl ether and cyclization, to give 7, which was carried on to 8. The Pt-catalyzed cyclization of 9 to 10 set the stage for the synthesis of ( + )-fawcettidine 15 by Gregory R. Dake of the University of British Columbia (Angew. Chem. Int. Ed. 2008, 47, 4221). This synthesis also illustrated the power of the Ramberg-Bäcklund reaction for the assembly of medium rings. The thiolate liberated from 12 readily added to the enone, to give 13. Oxidation to the sulfone followed by the Ramberg-Bäcklund reaction (halogenation, intramolecular displacement, chelotropic elimination of SO2 ) then delivered 14, which was selectively reduced, leading to 15. Albert Padwa of Emory University has developed (J. Org. Chem. 2008, 73, 3539) a general route to the Strychnos alkaloids, based on the facile cyclization of the furan 16 to the tetracyclic ketone 17. This project culminated in the synthesis of the heptacyclic strychnine 20. Eric N. Jacobsen of Harvard University has devised a family of catalysts for the enantioselective Pictet-Spengler reaction of tryptamine 21. He has now (Organic Lett. 2008, 10, 745) used this approach to prepare the triene 22 in 94 % ee.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4497
Author(s):  
Karmen Šibanc ◽  
Ivan Čuk ◽  
Maja Pajek ◽  
Igor Pušnik

Thermal imaging is used in various fields of industry and research to measure temperature and its possible differences. Since there is a lack of research and literature on palm temperatures and prevention of blisters on hands, our question was how palm temperature differs in human hands after different loads (Hang and Swing in Hang) for 30 s on a high bar. Thirty-eight students from the Faculty of Sport at the University of Ljubljana were measured with a high-quality thermal imaging camera. Palm temperatures were measured before the load was applied, immediately after and every 30 s for a period of 5 min after the load. Each hand was divided into nine different regions of interest (ROIs). Mean (XA), standard deviation (SD), maximum and minimum, and number of pixels were calculated. We found that there was no difference between the left and right hand. The temperature right after the load was applied decreased significantly for both loads and then increased above the level before the load was applied. After the static load, the temperature reached a constant higher level after 3 min. After the dynamic load, the temperatures continued to increase throughout the measurement period. Further investigation is needed to determine the time period in which the hand temperature reaches the temperature before the load is applied.


1981 ◽  
Vol 29 (3) ◽  
pp. 33

Practicum math lab. The practicum math lab for students in grades 1-6 was implemented by the Connellsville Area School District as part of its Title I program. The purpose of the program is to provide developmental remediation to students who are from three months to a year below grade level so they will have the skills to function at grade level in mathematics in the regular classroom. The program is based on research conducted at the University of Maryland and Kent State University. In struction in the math lab progresses from concrete operations, through problem-solving s ituations, and finally to the symbolic level. Emphasis is on the use of man ipulatives that are common objects that students use in everyday situations. Students receive at least three thirty-minute instructional periods a week in groups of no more than three. For more information contact James Duncan, Dunbar Township Elementary School, 711 Ridge Boulevard, Connellsville, PA 15425.


Author(s):  
Douglass F. Taber

William D. Wulff of Michigan State University developed (J. Am. Chem. Soc. 2010, 132, 13100; Org. Lett. 2010, 12, 4908) a general enantio- and diastereocontrolled route from an imine 1 to the aziridine 3. Craig W. Lindsley of Vanderbilt University established (Org. Lett. 2010, 12, 3276) a complementary approach (not illustrated). Joseph P. Konopelski of the University of California, Santa Cruz, designed (J. Am. Chem. Soc. 2010, 132, 11379) a practical and inexpensive flow apparatus for the cyclization of 4 to the β-lactam 5. Manas K. Ghorai of the Indian Institute of Technology, Kanpur, showed (J. Org. Chem. 2010, 75, 6173) that an aziridine 6 could be opened with malonate to give the γ-lactam 8. John P. Wolfe of the University of Michigan devised (J. Am. Chem. Soc. 2010, 132, 12157) a Pd catalyst for the enantioselective cyclization of 9 to 11. Sherry R. Chemler of the State University of New York at Buffalo observed (Angew. Chem. Int. Ed. 2010, 49, 6365) that the cyclization of 12 to 14 proceeded with high diastereoselectivity. Glenn M. Sammis of the University of British Columbia devised (Synlett 2010, 3035) conditions for the radical cyclization of 15 to 16. Jeffrey S. Johnson of the University of North Carolina observed (J. Am. Chem. Soc. 2010, 132, 9688) that the opening of racemic 17 with 18 could be effected with high ee. The residual 17 was highly enriched in the nonreactive enantiomer. Kevin D. Moeller of Washington University found (Org. Lett . 2010, 12, 5174) that the n -BuLi catalyzed cyclization of 20 set the quaternary center of 21 with high relative control. Yujiro Hayashi of the Tokyo University of Science, using the diphenyl prolinol TMS ether that he developed as an organocatalyst, designed (Org. Lett. 2010, 12, 4588) the sequential four-component coupling of 22, 23, benzaldehyde imine, and allyl silane to give 24 with high relative and absolute stereocontrol. Derrick L. J. Clive of the University of Alberta showed (J. Org. Chem. 2010, 75, 5223) that 25, prepared in enantiomerically pure form from serine, participated smoothly in the Claisen rearrangement, to deliver 27.


Sign in / Sign up

Export Citation Format

Share Document