The Swimming of Nymphon Gracile (Pyconogonida)

1971 ◽  
Vol 55 (1) ◽  
pp. 273-287
Author(s):  
ELFED MORGAN

1. The organization of the swimming legs of N. gracile has been described. The legs beat ventrally so the animal swims with the dorsal side foremost. The joints between the major segments of the leg are extended for most of the power stroke, but the distal segments articulate sequentially later in the beat, commencing with the flexion of the femoro-tibial joint at the end of the power stroke. Continued flexion reduces the leg radius considerably during the recovery stroke. 2. Animals swimming at constant depth were found to have a leg-beat frequency of about 1 beat/s. Above this the rate of ascent increased rapidly with increasing frequency of beat. Abduction or adduction of the leg usually occurred prior to the start of the power stroke with the femur in the elevated position. 3. Assuming a fixed limb profile at constant angular velocity, maximum lift was calculated to have occurred with the femur inclined at an angle of about 50° to the dorso-ventral body axis. The outward component of the lateral thrust decreased to zero at this point, and with further declination of the femur the lateral forces became inwardly directed. Of the different segments of the leg, tibia 2 and the tarsus and propodium contribute most of the hydrodynamic force. 4. The angular velocity of the leg varied during the power stroke, and the actual forces generated during two beats having the same amplitude and angular velocity but of high and low elevation were calculated. Greater lift occurred during the high-elevation beat when the leg continued to provide lift throughout the power stroke, whereas the low-elevation beat acquired negative lift values towards the end of the power stroke. The lateral thrust was now directed entirely inwards.

1977 ◽  
Vol 71 (1) ◽  
pp. 187-203
Author(s):  
ELFED MORGAN ◽  
STEPHEN V. HAYES

1. The vertical lift forces generated by the legs of Nymphon while swimming at constant depth have been estimated graphically using drag constants determined by a sedimentation method. Drag both normal and tangential to the different segments of the leg has been considered. 2. When holding station Nymphon characteristically employs a low elevation beat in which the upward force produced during the power stroke of each leg only just exceeds the predominantly downward force generated during the recovery. An upward lift component is also produced late during the recovery stroke. 3. The legs beat in a vertical plane and an investigation of the moments at the joints of the leg suggests that much of the power stroke is gravity assisted. 4. The upward lift produced by all eight legs agreed fairly well on average with the sinking force due to the animal's weight in water, and the vertical lift fluctuates rhythmically throughout the leg beat cycle. The relationship between the swimming gait and the amplitude of these fluctuations has been investigated. During the gait most frequently used by the animal fluctuations in vertical lift were found to be minimal.


1993 ◽  
Vol 183 (1) ◽  
pp. 149-164
Author(s):  
D. Barlow ◽  
M. A. Sleigh

Parameters of ciliary beating and water propulsion can be studied in a unique fashion in ctenophores because the beat frequency can be controlled. Pleurobrachia pileus comb plates were driven at frequencies between 2 and 25 Hz and at temperatures between 10 and 25°C. As frequency is increased from 5 to 25 Hz, the rest period between beats is first shortened and then disappears: the duration of the effective stroke is reduced because the angular velocity (which is directly proportional to the sliding velocity of the microtubules) and the tip speed of each plate increase whilst the amplitude of the beat remains unchanged. The recovery stroke is shortened because the recovery bend is propagated more quickly to the tip of the plate. The phase difference between adjacent plates in the metachronal wave (expressed as a percentage of the cycle) is increased in spite of a sharp decrease in the time delay between adjacent plates, a reduction in the number of plates per wave and an increase in the metachronal wave velocity. The water flow speed becomes more continuous and increases in approximate proportion to the tip speed whilst the estimated power output of a metachronal wave increases exponentially, from 10–10 W at a tip speed of about 20 mm s-1 to 10-8 W at a tip speed of about 75 mm s-1. When comb plates are driven to beat at 10 Hz and the temperature is raised from 10°C towards 20°C, the duration of the effective stroke is reduced and the comb plates have a somewhat higher angular velocity and tip speed; the duration of the recovery stroke is reduced with a faster propagation of the recovery bend; a rest phase first appears between successive beats and then becomes longer. The phase difference between adjacent plates in a metachronal wave (expressed as a percentage of the cycle time) is decreased, as is the time delay between successive plates in a metachronal wave, so that the number of plates per wave and the wave velocity are increased. The water flow speed and power output are increased by a modest amount (a rise in temperature from 10 to 20°C produces changes equivalent to those produced by a 5 Hz increase in frequency at 20°C). The cooperation between adjacent plates in the antiplectic metachronal wave makes a major contribution to the dramatic increase in power output of each metachronal wave that is seen as the beat frequency is increased.


Author(s):  
Robert Hard ◽  
Gerald Rupp ◽  
Matthew L. Withiam-Leitch ◽  
Lisa Cardamone

In a coordinated field of beating cilia, the direction of the power stroke is correlated with the orientation of basal body appendages, called basal feet. In newt lung ciliated cells, adjacent basal feet are interconnected by cold-stable microtubules (basal MTs). In the present study, we investigate the hypothesis that these basal MTs stabilize ciliary distribution and alignment. To accomplish this, newt lung primary cultures were treated with the microtubule disrupting agent, Colcemid. In newt lung cultures, cilia normally disperse in a characteristic fashion as the mucociliary epithelium migrates from the tissue explant. Four arbitrary, but progressive stages of dispersion were defined and used to monitor this redistribution process. Ciliaiy beat frequency, coordination, and dispersion were assessed for 91 hrs in untreated (control) and treated cultures. When compared to controls, cilia dispersed more rapidly and ciliary coordination decreased markedly in cultures treated with Colcemid (2 mM). Correlative LM/EM was used to assess whether these effects of Colcemid were coupled to ultrastructural changes. Living cells were defined as having coordinated or uncoordinated cilia and then were processed for transmission EM.


2011 ◽  
Vol 8 (1) ◽  
pp. 143-152
Author(s):  
S.F. Khizbullina

The steady flow of anomalous thermoviscous liquid between the coaxial cylinders is considered. The inner cylinder rotates at a constant angular velocity while the outer cylinder is at rest. On the basis of numerical experiment various flow regimes depending on the parameter of viscosity temperature dependence are found.


Author(s):  
Sanaz Bazaz Behbahani ◽  
Xiaobo Tan

In this paper, we propose a novel design for a pectoral fin joint of a robotic fish. This joint uses a flexible part to enable the rowing pectoral fin to feather passively and thus reduce the hydrodynamic drag in the recovery stroke. On the other hand, a mechanical stopper allows the fin to maintain its motion prescribed by the servomotor in the power stroke. The design results in net thrust even when the fin is actuated symmetrically for the power and recovery strokes. A dynamic model for this joint and for a pectoral fin-actuated robotic fish involving such joints is presented. The pectoral fin is modeled as a rigid plate connected to the servo arm through a pair of torsional spring and damper that describes the flexible joint. The hydrodynamic force on the fin is evaluated with blade element theory, where all three components of the force are considered due to the feathering degree of freedom of the fin. Experimental results on robotic fish prototype are provided to support the effectiveness of the design and the presented dynamic model. We utilize three different joints (with different sizes and different flexible materials), produced with a multi-material 3D printer, and measure the feathering angles of the joints and the forward swimming velocities of the robotic fish. Good match between the model predictions and experimental data is achieved, and the advantage of the proposed flexible joint over a rigid joint, where the power and recovery strokes have to be actuated at different speeds to produce thrust, is demonstrated.


Author(s):  
Eleanor I Lamont ◽  
Richard B Emlet

Abstract Larvae of barnacles typically pass through naupliar and cyprid planktonic stages before settlement and metamorphosis. As the final larval stage, cyprids swim much faster than nauplii and in turbulent fluid environments with high shears as they seek habitat. Cyprids swim with six pairs of reciprocating thoracic appendages and use two anterior antennules during settlement. Our understanding of how thoracic appendages generate movement is limited due to short stroke intervals (∼5 ms) that impede observations of the shape and trajectory of appendages. Here, we used high speed videography to observe both free-swimming and tethered cyprids of the intertidal acorn barnacle Balanus glandula to produce a comprehensive description of thoracic appendage swimming kinematics. Cyprids used a drag-based method of swimming: their six pairs of thoracic appendages moved through metachronal power strokes and synchronous recovery strokes similar to the thoracopod motions in calanoid copepods during escape swimming. During the power stroke, plumose setae on each appendage pair spread laterally into a high surface area and high drag paddle composed of a meshwork of fused setules. This interconnected setal array collapsed into a low surface area and low drag shape during the recovery stroke. These effective swimming appendages allowed cyprids to move upwards at an average speed of 1.4 cm s−1 (about 25 body lengths s−1) with an average beat frequency of 16 beats s−1, and reach an instantaneous velocity of up to 6 cm s−1. Beat frequency of the thoracic appendages was significantly associated with speed, with higher beat frequencies indicating faster swimming speed. At their average speed, cyprids moved at the intermediate Reynolds number of ∼10, in which both viscous and inertial forces affected movement. Cyprids could alter swimming direction by sweeping the posterior-most appendage pair to one side and beating the remaining thoracic appendages synchronously through the power stroke with greater motion on the outside of their turn. These results greatly enhance our understanding both of cyprid motility and how small planktonic organisms can use swimming appendages with fused setule arrays to reach high swimming speeds and affect directional changes.


1979 ◽  
Vol 79 (1) ◽  
pp. 245-263 ◽  
Author(s):  
P. W. WEBB

Measurements of acceleration performance of crayfish (mean mass 0.018 kg) were made during lateral giant mediated tail flips (LG tail flips) and truncated tail flips at 15°C. The LG tail flip power stroke was composed of a lift-off phase, when crayfish accelerated vertically from the substrate, and a free swimming phase. The total duration of the power stroke was 44 ms, followed by a recovery stroke lasting 173 ms. Truncated tail flips were used in acceleration and swimming by crayfish free of the substrate. Power strokes had a mean duration of 36 ms, and recovery strokes 92 ms. Net velocities, acceleration rates, and distances travelled by the centre of mass were similar for both types of tail flips. Thrust was generated almost entirely by the uropods and telson. Velocities and angles of orientation to the horizontal of abdominal segments were similar for both types of tail flip. Angles of attack were large, varying from 30° to 90°. Pressure (drag) forces were considered negligible compared to inertial forces associated with the acceleration of added water mass. Thrust forces, energy and power were determined for exemplary tail flips. Thrust was 0.92 and 0.42 N for LG tail flip lift-off and swimming phases respectively, and 0.29 N for the swimming truncated tail flip. Rates of working were 0.39, 0.19, and 0.18 W respectively. The efficiency of converting muscle power to backward motion was estimated to be 0.5 for power strokes and 0.68 for complete swimming cycles. Comparisons with fish performance suggested fish would be less efficient (0.1-0.2). The low efficiency is attributed to energy lost in lateral recoil movements.


2019 ◽  
Vol 57 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Sylvain Blanchon ◽  
Marie Legendre ◽  
Mathieu Bottier ◽  
Aline Tamalet ◽  
Guy Montantin ◽  
...  

BackgroundPrimary ciliary dyskinesia (PCD) is a rare genetic disorder resulting in abnormal ciliary motility/structure, extremely heterogeneous at genetic and ultrastructural levels. We aimed, in light of extensive genotyping, to identify specific and quantitative ciliary beating anomalies, according to the ultrastructural phenotype.MethodsWe prospectively included 75 patients with PCD exhibiting the main five ultrastructural phenotypes (n=15/group), screened all corresponding PCD genes and measured quantitative beating parameters by high-speed video-microscopy (HSV).ResultsSixty-eight (91%) patients carried biallelic mutations. Combined outer/inner dynein arms (ODA/IDA) defect induces total ciliary immotility, regardless of the gene involved. ODA defect induces a residual beating with dramatically low ciliary beat frequency (CBF) related to increased recovery stroke and pause durations, especially in case of DNAI1 mutations. IDA defect with microtubular disorganisation induces a low percentage of beating cilia with decreased beating angle and, in case of CCDC39 mutations, a relatively conserved mean CBF with a high maximal CBF. Central complex defect induces nearly normal beating parameters, regardless of the gene involved, and a gyrating motion in a minority of ciliated edges, especially in case of RSPH1 mutations. PCD with normal ultrastructure exhibits heterogeneous HSV values, but mostly an increased CBF with an extremely high maximal CBF.ConclusionQuantitative HSV analysis in PCD objectives beating anomalies associated with specific ciliary ultrastructures and genotypes. It represents a promising approach to guide the molecular analyses towards the best candidate gene(s) to be analysed or to assess the pathogenicity of the numerous sequence variants identified by next-generation-sequencing.


2018 ◽  
Vol 277 ◽  
pp. 168-177
Author(s):  
Mykhailo Berdnyk

It is the first generalized 3D mathematic model, which is created for calculating temperature fields in the empty isotropic rotary body, which is restricted by end surfaces and lateral surface of rotation and rotates with constant angular velocity around the axis OZ, with taking into account finite velocity of the heat conductivity in the form of the Dirichlet problem. In this work, an integral transformation was formulated for the 2D finite space, with the help of which a temperature field in the empty isotropic rotary body was determined in the form of convergence series by the Fourier functions.


Sign in / Sign up

Export Citation Format

Share Document