scholarly journals Deep phenotyping, including quantitative ciliary beating parameters, and extensive genotyping in primary ciliary dyskinesia

2019 ◽  
Vol 57 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Sylvain Blanchon ◽  
Marie Legendre ◽  
Mathieu Bottier ◽  
Aline Tamalet ◽  
Guy Montantin ◽  
...  

BackgroundPrimary ciliary dyskinesia (PCD) is a rare genetic disorder resulting in abnormal ciliary motility/structure, extremely heterogeneous at genetic and ultrastructural levels. We aimed, in light of extensive genotyping, to identify specific and quantitative ciliary beating anomalies, according to the ultrastructural phenotype.MethodsWe prospectively included 75 patients with PCD exhibiting the main five ultrastructural phenotypes (n=15/group), screened all corresponding PCD genes and measured quantitative beating parameters by high-speed video-microscopy (HSV).ResultsSixty-eight (91%) patients carried biallelic mutations. Combined outer/inner dynein arms (ODA/IDA) defect induces total ciliary immotility, regardless of the gene involved. ODA defect induces a residual beating with dramatically low ciliary beat frequency (CBF) related to increased recovery stroke and pause durations, especially in case of DNAI1 mutations. IDA defect with microtubular disorganisation induces a low percentage of beating cilia with decreased beating angle and, in case of CCDC39 mutations, a relatively conserved mean CBF with a high maximal CBF. Central complex defect induces nearly normal beating parameters, regardless of the gene involved, and a gyrating motion in a minority of ciliated edges, especially in case of RSPH1 mutations. PCD with normal ultrastructure exhibits heterogeneous HSV values, but mostly an increased CBF with an extremely high maximal CBF.ConclusionQuantitative HSV analysis in PCD objectives beating anomalies associated with specific ciliary ultrastructures and genotypes. It represents a promising approach to guide the molecular analyses towards the best candidate gene(s) to be analysed or to assess the pathogenicity of the numerous sequence variants identified by next-generation-sequencing.

2014 ◽  
Vol 44 (6) ◽  
pp. 1579-1588 ◽  
Author(s):  
Johanna Raidt ◽  
Julia Wallmeier ◽  
Rim Hjeij ◽  
Jörg Große Onnebrink ◽  
Petra Pennekamp ◽  
...  

Primary ciliary dyskinesia (PCD) is a rare genetic disorder leading to recurrent respiratory tract infections. High-speed video-microscopy analysis (HVMA) of ciliary beating, currently the first-line diagnostic tool for PCD in most centres, is challenging because recent studies have expanded the spectrum of HVMA findings in PCD from grossly abnormal to very subtle. The objective of this study was to describe the diversity of HVMA findings in genetically confirmed PCD individuals.HVMA was performed as part of the routine work-up of individuals with suspected PCD. Subsequent molecular analysis identified biallelic mutations in the PCD-related genes of 66 individuals. 1072 videos of these subjects were assessed for correlation with the genotype.Biallelic mutations (19 novel) were found in 17 genes: DNAI1, DNAI2, DNAH5, DNAH11, CCDC103, ARMC4, KTU/DNAAF2, LRRC50/DNAAF1, LRRC6, DYX1C1, ZMYND10, CCDC39, CCDC40, CCDC164, HYDIN, RSPH4A and RSPH1. Ciliary beat pattern variations correlated well with the genetic findings, allowing the classification of typical HVMA findings for different genetic groups. In contrast, analysis of ciliary beat frequency did not result in additional diagnostic impact.In conclusion, this study provides detailed knowledge about the diversity of HVMA findings in PCD and may therefore be seen as a guide to the improvement of PCD diagnostics.


2021 ◽  
Vol 7 (1) ◽  
pp. 00792-2020
Author(s):  
Pedro Sampaio ◽  
Mónica Ferro da Silva ◽  
Inês Vale ◽  
Mónica Roxo-Rosa ◽  
Andreia Pinto ◽  
...  

Evaluation of ciliary beat frequency (CBF) performed by high-speed videomicroscopy analysis (HVMA) is one of the techniques required for the correct diagnosis of primary ciliary dyskinesia (PCD). Currently, due to lack of open-source software, this technique is widely performed by visually counting the ciliary beatings per a given time-window. Our aim was to generate open-source, fast and intuitive software for evaluating CBF, validated in Portuguese PCD patients and healthy volunteers.Nasal brushings collected from 17 adult healthy volunteers and 34 PCD-referred subjects were recorded using HVMA. Evaluation of CBF was compared by two different methodologies: the new semi-automated computer software CiliarMove and the manual observation method using slow-motion movies. Clinical history, nasal nitric oxide and transmission electron microscopy were performed for diagnosis of PCD in the patient group. Genetic analysis was performed in a subset (n=8) of suspected PCD patients.The correlation coefficient between the two methods was R2=0.9895. The interval of CBF values obtained from the healthy control group (n=17) was 6.18–9.17 Hz at 25°C. In the PCD-excluded group (n=16), CBF ranged from 6.84 to 10.93 Hz and in the PCD group (n=18), CBF ranged from 0 to 14.30 Hz.We offer an automated open-source programme named CiliarMove, validated by the manual observation method in a healthy volunteer control group, a PCD-excluded group and a PCD-confirmed group. In our hands, comparisons between CBF intervals alone could discern between healthy and PCD groups in 78% of the cases.


1997 ◽  
Vol 106 (10) ◽  
pp. 854-858 ◽  
Author(s):  
André Coste ◽  
Marie-Claude Millepied ◽  
Catherine Chapelin ◽  
Philippe Reinert ◽  
Françoise Poron ◽  
...  

The goal of the study was to evaluate the incidence of primary ciliary dyskinesia (PCD) in children suffering from recurrent respiratory tract infections (RRIs) by means of a noninvasive method. Respiratory ciliated cells were collected by nasal brushing in 118 children (4.6 ± 2.5 years) with RRIs. The ciliary beat frequency (CBF) was measured with a stroboscopic method, and when the CBF was abnormal, the ciliary ultrastructure was analyzed by a quantitative method. The CBF could be measured in 106 patients (90%) and was abnormal in 15 patients. The ciliary ultrastructure was found to be abnormal in 11 of 15 patients: PCD was diagnosed in 6 cases, and acquired ciliary defects were observed in the remaining 5 patients. Our conclusion, that PCD is rare but not exceptional (5.6%) in children with RRIs, justifies the systematic investigation of ciliated cells in such patients. For this purpose, nasal brushing can be used to sample ciliated cells even in young children.


2020 ◽  
Vol 21 (11) ◽  
pp. 4052
Author(s):  
Makoto Yasuda ◽  
Taka-aki Inui ◽  
Shigeru Hirano ◽  
Shinji Asano ◽  
Tomonori Okazaki ◽  
...  

Small inhaled particles, which are entrapped by the mucous layer that is maintained by mucous secretion via mucin exocytosis and fluid secretion, are removed from the nasal cavity by beating cilia. The functional activities of beating cilia are assessed by their frequency and the amplitude. Nasal ciliary beating is controlled by intracellular ions (Ca2+, H+ and Cl−), and is enhanced by a decreased concentration of intracellular Cl− ([Cl−]i) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which increases the ciliary beat amplitude. A novel method to measure both ciliary beat frequency (CBF) and ciliary beat distance (CBD, an index of ciliary beat amplitude) in cHNECs has been developed using high-speed video microscopy, which revealed that a decrease in [Cl−]i increased CBD, but not CBF, and an increase in [Cl−]i decreased both CBD and CBF. Thus, [Cl−]i inhibits ciliary beating in cHNECs, suggesting that axonemal structures controlling CBD and CBF may have Cl− sensors and be regulated by [Cl−]i. These observations indicate that the activation of Cl− secretion stimulates ciliary beating (increased CBD) mediated via a decrease in [Cl−]i in cHNECs. Thus, [Cl−]i is critical for controlling ciliary beating in cHNECs. This review introduces the concept of Cl− regulation of ciliary beating in cHNECs.


2011 ◽  
Vol 111 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Mary A. K. Olm ◽  
João E. Kögler ◽  
Mariangela Macchione ◽  
Amelia Shoemark ◽  
Paulo H. N. Saldiva ◽  
...  

Ciliary beat frequency (CBF) measurements provide valuable information for diagnosing of primary ciliary dyskinesia (PCD). We developed a system for measuring CBF, used it in association with electron microscopy to diagnose PCD, and then analyzed characteristics of PCD patients. 1 The CBF measurement system was based on power spectra measured through digital imaging. Twenty-four patients suspected of having PCD (age 1–19 yr) were selected from a group of 75 children and adolescents with pneumopathies of unknown causes. Ten healthy, nonsmoking volunteers (age ≥17 yr) served as a control group. Nasal brush samples were collected, and CBF and electron microscopy were performed. PCD was diagnosed in 12 patients: 5 had radial spoke defects, 3 showed absent central microtubule pairs with transposition, 2 had outer dynein arm defects, 1 had a shortened outer dynein arm, and 1 had a normal ultrastructure. Previous studies have reported that the most common cilia defects are in the dynein arm. As expected, the mean CBF was higher in the control group ( P < 0.001) and patients with normal ultrastructure ( P < 0.002), than in those diagnosed with cilia ultrastructural defects (i.e., PCD patients). An obstructive ventilatory pattern was observed in 70% of the PCD patients who underwent pulmonary function tests. All PCD patients presented bronchial wall thickening on chest computed tomography scans. The protocol and diagnostic techniques employed allowed us to diagnose PCD in 16% of patients in this study.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xinyue Zhao ◽  
Chun Bian ◽  
Keqiang Liu ◽  
Wenshuai Xu ◽  
Yaping Liu ◽  
...  

Abstract Background Primary ciliary dyskinesia (PCD) is a rare, highly heterogeneous genetic disorder involving the impairment of motile cilia. With no single gold standard for PCD diagnosis and complicated multiorgan dysfunction, the diagnosis of PCD can be difficult in clinical settings. Some methods for diagnosis, such as nasal nitric oxide measurement and digital high-speed video microscopy with ciliary beat pattern analysis, can be expensive or unavailable. To confirm PCD diagnosis, we used a strategy combining assessment of typical symptoms with whole-exome sequencing (WES) and/or low-pass whole-genome sequencing (WGS) as an unbiased detection tool to identify known pathogenic mutations, novel variations, and copy number variations. Results A total of 26 individuals of Chinese origin with a confirmed PCD diagnosis aged 13 to 61 years (median age, 24.5 years) were included. Biallelic pathogenic mutations were identified in 19 of the 26 patients, including 8 recorded HGMD mutations and 24 novel mutations. The detection rate reached 73.1%. DNAH5 was the most frequently mutated gene, and c.8383C > T was the most common mutated variant, but it is relatively rare in PCD patients from other ethnic groups. Conclusion This study demonstrates the practical clinical utility of combining WES and low-pass WGS as a no-bias detecting tool in adult patients with PCD, showing a clinical characteristics and genetic spectrum of Chinese PCD patients.


2019 ◽  
Vol 161 (5) ◽  
pp. 877-880 ◽  
Author(s):  
Jay M. Bhatt ◽  
Ethan G. Muhonen ◽  
Maxene Meier ◽  
Scott D. Sagel ◽  
Kenny H. Chan

Objectives Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by abnormal respiratory cilia ultrastructure and/or function causing defective mucociliary clearance. We investigated the extent and severity of rhinosinusitis in a large cohort of children with PCD and explored associations among risk factors, including genotype and sinus disease. Study Design Retrospective chart review. Setting Tertiary academic children’s hospital. Subjects and Methods A review was conducted with a patient registry at the PCD Foundation Center at our institution. Demographic, imaging, clinical, and operative data were reviewed through the institutional electronic health record system. Results Fifty-four subjects were identified with mean and median age at diagnosis of 5.2 and 4.0 years. The male:female ratio was 35%:65%. Sinus symptoms were present in 46 (85%) subjects, 22 of whom had chronic rhinosinusitis. Nineteen (35%) subjects underwent operative intervention, consisting of endoscopic sinus surgery (ESS; 16 patients) and maxillary lavage (3 patients). Nineteen subjects underwent adenoidectomy for PCD-related indications. Five sinus-related admissions in 3 subjects were noted during the study period, and no complication of rhinosinusitis occurred in the cohort. Genetic test results were available in 27 subjects, in whom 23 (85%) had biallelic mutations in a PCD gene. Demographic factors, Lund-Mackay score, and PCD genotype were not found to be predictors for ESS or hospitalization in our cohort. Conclusion While rhinosinusitis was common in our PCD cohort, most patients did not require ESS. Since complications of rhinosinusitis were uncommon, we recommend judicious surgical management tailored to the patient’s symptoms.


2011 ◽  
Vol 22 (23) ◽  
pp. 4527-4538 ◽  
Author(s):  
Christen G. DiPetrillo ◽  
Elizabeth F. Smith

Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.


2016 ◽  
Vol 49 (1) ◽  
pp. 1601090 ◽  
Author(s):  
Jane S. Lucas ◽  
Angelo Barbato ◽  
Samuel A. Collins ◽  
Myrofora Goutaki ◽  
Laura Behan ◽  
...  

The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no “gold standard” reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia.


Sign in / Sign up

Export Citation Format

Share Document