The coordinate roles of branchial nerve activity and potassium in the stimulation of ciliary activity in Mytilus edulis: observations with phenoxybenzamine, bromolysergic acid and fluorescence histochemistry

1976 ◽  
Vol 65 (1) ◽  
pp. 109-116
Author(s):  
A. A. Paparo

Potassium concentrations in excess of 30 mM increase the rate of beating of lateral cilia on the gill of Mytilus edulis. Cilioexcitation produced by low frequency (5 beats/s) electrical stimulation was potentiated with potassium but blocked with bromolysergic acid (a serotonergic inhibitor). Cilioinhibition produced by high frequency (50 beats/s) stimulation was decreased with potassium and phenoxybenzamine (a dopaminergic inhibitor). Phenoxybenzamine enhanced the cilioexcitation produced by potassium. Potassium doses incapable of maintaining a basal rate of beating (less than 30 mM) could increase ciliary activity if phenoxybenzamine was also added. After transection of the branchial nerve, the yellow-fluorophore (serotonergic storage) and cilioexcitatory effect of potassium gradually decrease. This study shows that the potassium effect on ciliary activity (a) increase with low frequency nerve stimulation, presumably through the release of serotonin and (b) decreases with high frequency nerve stimulation, presumably through the release of dopamine.

1978 ◽  
Vol 74 (1) ◽  
pp. 101-113 ◽  
Author(s):  
EDWARD J. CATAPANE ◽  
GEORGE B. STEFANO ◽  
EDWARD AIELLO

The function of the CNS of Mytilus edulis was investigated for its role in the control of lateral ciliary activity. Ciliary beating rates were directly measured by stroboscopic microscopy of gill preparations which had the ipsilateral visceral ganglion (VG) attached. Low frequency electrical stimulation of the cerebrovisceral connective (CVC) or superfusion of the VG with serotonin increased lateral ciliary activity. This response could be antagonized by pretreating the gill with BOL or methysergide (MS), or by pretreating the VG with BOL, MS or ergonovine (ERG). High frequency stimulation of the CVC or superfusion of the VG with dopamine or epinephrine decreased lateral ciliary activity. This response could be antagonized by pretreating the gill with ERG or by pretreating the VG with ERG or MS. Acetylcholine and its mimetic acetylmethylcholine were found to be non-effective in altering ciliary activity in this study. The study demonstrates a reciprocal serotonergic-dopaminergic innervation of lateral gill ciliated cells originating in the CNS.


2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


2000 ◽  
Vol 83 (4) ◽  
pp. 2412-2420 ◽  
Author(s):  
Hiroshi Ikeda ◽  
Tatsuya Asai ◽  
Kazuyuki Murase

We investigated the neuronal plasticity in the spinal dorsal horn and its relationship with spinal inhibitory networks using an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the lamina II (the substantia gelatinosa) of the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net neuronal excitation along the slice-depth, was depressed by 28% for more than 1 h after a high-frequency conditioning stimulation of A fibers in the dorsal root (3 tetani of 100 Hz for 1 s with an interval of 10 s). The depression was not induced in a perfusion solution containing an NMDA antagonist,dl-2-amino-5-phosphonovaleric acid (AP5; 30 μM). In a solution containing the inhibitory amino acid antagonists bicuculline (1 μM) and strychnine (3 μM), and also in a low Cl−solution, the excitation evoked by the single-pulse stimulation was enhanced after the high-frequency stimulation by 31 and 18%, respectively. The enhanced response after conditioning was depotentiated by a low-frequency stimulation of A fibers (0.2–1 Hz for 10 min). Furthermore, once the low-frequency stimulation was applied, the high-frequency conditioning could not potentiate the excitation. Inhibitory transmissions thus regulate the mode of synaptic plasticity in the lamina II most likely at afferent terminals. The high-frequency conditioning elicits a long-term depression (LTD) of synaptic efficacy under a greater activity of inhibitory amino acids, but it results in a long-term potentiation (LTP) when inhibition is reduced. The low-frequency preconditioning inhibits the potentiation induction and maintenance by the high-frequency conditioning. These mechanisms might underlie robust changes of nociception, such as hypersensitivity after injury or inflammation and pain relief after electrical or cutaneous stimulation.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2521
Author(s):  
Jian-Chiun Liou ◽  
Yu-Cheng Hsiao ◽  
Cheng-Fu Yang

Infrared thermography can be applied in different medical systems, for example it can be used to catch the images of living blood vessels. Far infrared rays can be used in a heating machine, which can be applied in the clinical hemodialysis patients. Infrared electronically sensitized images, which are generated by near-infrared Charge-coupled Device (CCD), are used to detect blood vessels, and used as a long-wavelength external stimulating therapeutic tissue repair system. When an infrared sensor detection and actuator treatment is applied during hemodialysis, a missing needle can be detected, and far infrared rays have a therapeutic effect on blood vessels. Because a far-infrared actuated light source can improve blood circulation, it is currently used to prevent fistula embolism in hemodialysis (HD) patients and reduce vascular occlusion after hemodialysis. Sensors used for sudden changes in heart rate variability (HRV) are used as predictive and evaluation indicators for our new method. Far-infrared actuated radiation can increase sympathetic nerve activity and regulation of parasympathetic and sympathetic nerves. We performed baseline measurements of the low-frequency/high-frequency ratio of autonomic nerve activity before hemodialysis (low frequency (LF), high frequency (HF), LF/HF, before HD) and after hemodialysis (LF/HF, after-HD). Based on data from the HRV continuity tracking report, 35 patients with autonomic nerve activation were treated and evaluated. We have demonstrated that the resulting near-infrared (NIR) sensor imaging and far-infrared actuator illumination can be used for the detection and treatment of hemodialysis patients.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Soichiro Kaneko ◽  
Masashi Watanabe ◽  
Shin Takayama ◽  
Takehiro Numata ◽  
Takashi Seki ◽  
...  

Objective. We investigated the relationship between superior mesenteric artery blood flow volume (SMA BFV) and autonomic nerve activity in acupuncture stimulation of lower limb points through heart rate variability (HRV) evaluations.Methods. Twenty-six healthy volunteers underwent crossover applications of bilateral manual acupuncture stimulation at ST36 or LR3 or no stimulation. Heart rate, blood pressure, cardiac index, systemic vascular resistance index, SMA BFV, and HRV at rest and 30 min after the intervention were analyzed.Results. SMA BFV showed a significant increase after ST36 stimulation (0% to 14.1% ± 23.4%,P=0.007); very low frequency (VLF), high frequency (HF), low frequency (LF), and LF/HF were significantly greater than those at rest (0% to 479.4% ± 1185.6%,P=0.045; 0% to 78.9% ± 197.6%,P=0.048; 0% to 123.9% ± 217.1%,P=0.006; 0% to 71.5% ± 171.1%,P=0.039). Changes in HF and LF also differed significantly from those resulting from LR3 stimulation (HF: 78.9% ± 197.6% versus −18.2% ± 35.8%,P=0.015; LF: 123.9% ± 217.1% versus 10.6% ± 70.6%,P=0.013).Conclusion. Increased vagus nerve activity after ST36 stimulation resulted in increased SMA BFV. This partly explains the mechanism of acupuncture-induced BFV changes.


1975 ◽  
Vol 229 (3) ◽  
pp. 770-776 ◽  
Author(s):  
HL Batsel ◽  
AJ Lines

Sneezes were induced in anestized cats by repetitive stimulation of the ethmoidal nerve. Activity of bulbar respiratory neurons during sneezing was recorded extracellularly through tungsten microelectrodes. Most expiratory neurons could be locked onto the stimulus pulses so that they responded either throughout inspiration as well as expiration or so that they began responding at some time during inspiration. As inspiration approached termination, multiple spiking occurred, finally to result in high-frequency bursts which just preceded active expiration. A fraction of expiratory neurons were activated only in bursts. Latent expiratory neurons were recruited in sneezing. Inspiratory neurons near nucleus ambiguus and most of those near fasciculus solitarius displayed similar response patterns consisting of silent periods followed by delayed smooth activations. Temporal characteristics of the silent periods, "inhibitory gaps," suggested that they resulted from inhibition whose source was the expiratory neurons which were driven throughout inspriation. Some inspiratory neurons in the area of fasciculus solitarius failed to exhibit inhibitory gaps.


2016 ◽  
Vol 28 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Eduardo José Nepomuceno Montenegro ◽  
Geisa Guimarães de Alencar ◽  
Gisela Rocha de Siqueira ◽  
Marcelo Renato Guerino ◽  
Juliana Netto Maia ◽  
...  

2021 ◽  
Vol 91 (12) ◽  
pp. 2067
Author(s):  
Y. Katsnelson ◽  
А.В. Ильинский ◽  
Е.Б. Шадрин

A method of transcranial electromagnetic stimulation of the mammalian brain is proposed. The method is based on the interference of currents caused by high-frequency orthogonal oscillations of electric fields, which are modulated by low-frequency meander pulses. The effectiveness of the method was confirmed by the results of experiments on stimulating the brain of rats and rabbits.


Sign in / Sign up

Export Citation Format

Share Document