Thermoregulation of African and European Honeybees during Foraging, Attack, and Hive Exits and Returns

1979 ◽  
Vol 80 (1) ◽  
pp. 217-229 ◽  
Author(s):  
HEINRICH BERND

1. While foraging, attacking, or leaving or returning to their hives, both the African and European honeybees maintained their thoracic temperature at 30 °C or above, independent of ambient temperature from 7 to 23 °C (in shade). 2. Thoracic temperatures were not significantly different between African and European bees. 3. Thoracic temperatures were significantly different during different activities. Average thoracic temperatures (at ambient temperatures of 8–23 °C) were lowest (30 °C) in bees turning to the hive. They were 31–32 °C during foraging, and 36–38 °C in bees leaving the hive, and in those attacking. The bees thus warm up above their temperature in the hive (32 °C) before leaving the colony. 4. In the laboratory the bees (European) did not maintain the minimum thoracic temperature for continuous flight (27 °C) at 10 °C. When forced to remain in continuous flight for at least 2 min, thoracic temperature averaged 15 °C above ambient temperature from 15 to 25 °C, and was regulated only at high ambient temperatures (30–40 °C). 5. At ambient temperatures > 25 °C, the bees heated up during return to the hive, attack and foraging above the thoracic temperatures they regulated at low ambient temperatures to near the temperatures they regulated during continuous flight. 6. In both African and European bees, attack behaviour and high thoracic temperature are correlated. 7. The data suggest that the bees regulate thoracic temperature by both behavioural and physiological means. It can be inferred that the African bees have a higher metabolic rate than the European, but their smaller size, which facilitates more rapid heat loss, results in similar thoracic temperatures.

1993 ◽  
Vol 174 (1) ◽  
pp. 299-320 ◽  
Author(s):  
G. N. Stone

1. This study examines variation in thoracic temperatures, rates of pre-flight warm-up and heat loss in the solitary bee Anthophora plumipes (Hymenoptera; Anthophoridae). 2. Thoracic temperatures were measured both during free flight in the field and during tethered flight in the laboratory, over a range of ambient temperatures. These two techniques give independent measures of thermoregulatory ability. In terms of the gradient of thoracic temperature on ambient temperature, thermoregulation by A. plumipes is more effective before flight than during flight. 3. Warm-up rates and body temperatures correlate positively with body mass, while mass-specific rates of heat loss correlate negatively with body mass. Larger bees are significantly more likely to achieve flight temperatures at low ambient temperatures. 4. Simultaneous measurement of thoracic and abdominal temperatures shows that A. plumipes is capable of regulating heat flow between thorax and abdomen. Accelerated thoracic cooling is only demonstrated at high ambient temperatures. 5. Anthophora plumipes is able to fly at low ambient temperatures by tolerating thoracic temperatures as low as 25 sC, reducing the metabolic expense of endothermic activity. 6. Rates of heat generation and loss are used to calculate the thermal power generated by A. plumipes and the total energetic cost of warm-up under different thermal conditions. The power generated increases with thoracic temperature excess and ambient temperature. The total cost of warm-up correlates negatively with ambient temperature.


1971 ◽  
Vol 55 (1) ◽  
pp. 223-239 ◽  
Author(s):  
BERND HEINRICH ◽  
GEORGE A. BARTHOLOMEW

The physiology of pre-flight warm-up in Manduca sexta was analysed with regard to rate of heat production, regional partitioning of heat between thorax and abdomen, and the control of blood circulation. 1. When moths which have come to equilibrium with ambient temperature undergo pre-flight warm-up, the thoracic temperature increases linearly until flight temperature (37-39 °C) is approached. 2. The rate of increase in thoracic temperature during warm-up increases directly with ambient temperature from about 2 °C/min at 15 °C to about 7.6 °C/min at 30 °C. 3. The temperature of the abdomen remains near ambient throughout the period of warm-up, but during the initial part of post-flight cooling while thoracic temperature declines sharply abdominal temperatures rise appreciably. 4. During warm-up the rate of wing vibration increases linearly with thoracic temperature. At a thoracic temperature of 15 °C the rate is about 8/sec and at 35 °C it is about 25/sec. 5. When resting animals are held by the legs they at once begin to beat their wings through a wide angle. These wing beats at any given thoracic temperature are slower than the wing vibrations characteristic of normal warm-up, but they cause thoracic temperature to increase at almost the normal rate. 6. The removal of thoracic scales causes a decrease in rate of warm-up, but in still air this does not prevent the moths from reaching flight temperature. 7. During cooling the rate of decrease in thoracic temperature is greater in live animals than in freshly killed ones. At any given difference between thoracic and ambient temperatures cooling rates are directly related to thoracic temperature. 8. In resting moths heart pulsations are usually variable with regard to rate, amplitude, rhythm, and sometimes direction, but the records of cardiac activity simultaneously obtained from thorax and abdomen show close correspondence. 9. During warm-up the records of changes in impedance from electrodes in the abdomen indicate that pulsations of the abdominal heart are either absent, greatly reduced, or at a frequency different from that simultaneously recorded from the thorax. 10. The calculated rate of heat production during warm-up is linearly related to thoracic temperature. 11. Our data are consistent with the assumption that heat produced in the thorax during warm-up is sequestered there by reduction in blood circulation between thorax and abdomen. 12. Rates of warm-up in insects are close to the values predicted on the basis of body weight from data on heterothermic birds and animals.


1973 ◽  
Vol 58 (2) ◽  
pp. 503-507
Author(s):  
GEORGE A. BARTHOLOMEW ◽  
TIMOTHY M. CASEY

The rates of pre-flight warm-up in adult Hyalophora cecropia (mean weight 3.10g) were measured 24-36 h after eclosion at 15, 20, 25, and 30 °C in still air. 1. The rate of thoracic warm-up increased linearly with ambient temperature, averaging 2.6 °C/min at 15 °C and 6.5 °C/min at 30 °C. 2. Thoracic temperatures typically reached 37-39 °C while abdominal temperatures rarely rose more than 3 °C above ambient. 3. The cooling curves of the thorax at 15° and 25 °C were straight lines and had similar slopes on a semi-logarithmic plot. 4. Our data are compatible with the idea that heat production is dependent on thoracic temperature, and are incompatible with the theory that it depends on the difference between thoracic and ambient temperatures.


1975 ◽  
Vol 38 (4) ◽  
pp. 593-597 ◽  
Author(s):  
D. W. Wilmore ◽  
A. D. Mason ◽  
D. W. Johnson ◽  
B. A. Pruitt

Four controls and eight burned patients with thermal injury ranging from 7 to 84% total body surface were studied in an environmental chamber at 25 and 33 degrees C ambient temperature and a constant vapor pressure during two consecutive 24-h periods. Hypermetabolism was present in the burn patients in both ambient temperatures and core and skin temperatures were consistently higher than in the normal men despite increased evaporative water loss. The higher environmental temperature decreased metabolic rate in patients with large thermal injuries in whom the decrement in dry heat loss produced by higher ambient temperature exceeded the increase of wet heat loss. In patients with burns smaller than 60%, these changes equaled one another and higher environmental temperature exerted no effect on metabolic rate. Core-skin heat conductivity increased with burn size; patients with large burns were characterized by inadequate core-skin insulation when exposed to the cooler environment, necessitating the compensatory increase of metabolic rate. This increase, however, was small and of the order of 5–8 kcal times m-2 times h-1.


1973 ◽  
Vol 58 (3) ◽  
pp. 677-688
Author(s):  
BERND HEINRICH ◽  
ANN E. KAMMER

1. Extracellular action potentials and thoracic temperatures (TTh) were simultaneously recorded from the fibrillar flight muscles of Bombus vosnesenskii queens during preflight warm-up, during stabilization of TTh in stationary bees, and during fixed flight. 2. In most stationary bees during warm-up and during the stabilization of TTh the rate of heat production, as calculated from thoracic temperature and passive rates of cooling, is directly related to the frequency of action potentials in the muscles. 3. The rate of heat production increases throughout warm-up primarily because of a greater spike frequency at higher TTh. 4. In stationary bees during the stabilization of TTh at different ambient temperatures (TA) the fibrillar muscles are activated by any in a continuous range of spike frequencies, rather than only by on-off responses. 5. Regulation of TTh in stationary bees may involve not only changes in the rate of heat production but also variations of heat transfer from the thorax to the abdomen. 6. During fixed flight the fibrillar muscles are usually activated at greater rates at the initiation of flight than later in flight, but the spike frequency and thus heat production are not varied in response to differences in TA and heating and cooling rates. 7. During fixed flight TTh is not regulated at specific set-points; TTh appears to vary passively in accordance with the physical laws of heating and cooling. 8. Differences in the TTh of bees in free and in fixed flight are discussed with regard to mechanisms of thermoregulation.


1967 ◽  
Vol 47 (1) ◽  
pp. 21-33
Author(s):  
JAMES EDWARD HEATH ◽  
PHILLIP A. ADAMS

1. Moths ‘warm-up’ prior to flight at mean rates of 4.06° C./min. in Celerio lineata and 2.5° C./min. in Rothschildia jacobae. The abdominal temperature rises only 2-3° C. during activity. 2. Oxygen consumption of torpid sphinx moths increases by a factor of 2.27 as temperature changes from 26° to 36° C. 3. Oxygen consumption during ‘warm-up’ increases with duration of ‘warm-up’ from about 1000 µl./g. min during the initial 30 sec. to nearly 1600µl./g. min. during the 3rd min. This increase compensates for increasing heat loss from the thorax during ‘warm-up‘. 4. When the moths are regulating thoracic temperature, oxygen consumption increases with decreasing air temperature from a mean of about 400µl./g. min at 31° C. to about 650µl./g. min. at 26° C 5. Values of O2 consumption calculated from the cooling curve of C. lineata are about 85% of the measured values of O2 consumption. 6. The giant silk moth, Rothschildia jacobae, regulates thoracic temperature during activity between about 32° and 36° C. at ambient temperature from 17° to 29° C. Moths kept at high temperatures are active longer, have more periods of activity and expend more energy for thermoregulation than moths kept at low temperatures. 7. Large moths increase metabolism during active periods to offset heat loss and thereby maintain a relatively constant internal temperature. In this regard they may be considered endothermic, like birds and mammals. 8. We estimate that male moths use 10% of their stored fat for thermoregulation, while females may use 50%.


1972 ◽  
Vol 50 (10) ◽  
pp. 1243-1250 ◽  
Author(s):  
G. Untergasser ◽  
J. S. Hayward

The embryos of mallards and scaups show no evidence of homeothermy before the point of hatching. The ability to thermoregulate develops quickly directly after hatching, so that day-old mallards remain homeothermic for at least 2.5 h at ambient temperatures down to +2 °C. The lowest ambient temperatures at which 1-day-old scaups and common eiders remain homeothermic for at least 2.5 h are −2 °C and −7 °C respectively. This rapid development of cold resistance is related to increases in peak metabolic rates and insulative capacities. In embryos of pipped eggs, metabolic rates do not exceed 1.1 ml O2/g h for mallards and 1.6 ml/g h for scaups, while the peak metabolic rates of the day-old young are 6.1 and 7.0 ml/g h respectively. One-day-old common eiders have a peak metabolic rate of about 5 ml/g h. After an age of 3 days, cold resistance increases with age while peak metabolic rates decrease, indicating that reduced heat loss contributes to increased cold resistance. At an age of 7 days, mallards can maintain homeothermy for at least 2.5 h at −4 °C, scaups at −14 °C, and common eiders at −16 °C. Insulation indices of eider ducklings are significantly higher than those of young mallards and scaups.


2019 ◽  
Author(s):  
Michael Briga ◽  
Simon Verhulst

AbstractCrucial to our understanding of the ageing process is identifying how traits change with age, which variables alter their ageing process and whether these traits associate with lifespan.We here investigated metabolic ageing in zebra finches. We longitudinally monitored 407 individuals during six years and collected 3213 measurements of two independent mass-adjusted metabolic traits: basal metabolic rate (BMRm) at thermoneutral temperatures and standard metabolic rate (SMRm), which is the same as BMRm but at ambient temperatures below thermoneutrality.BMRmdecreased linearly with age, consistent with earlier reports. In contrast, SMRmincreased linearly with age. To the best of our knowledge, this is the first quantification of SMRm ageing, and thereby of the contrast between SMRm and BMRm ageing.Neither metabolic rate nor metabolic ageing rate were associated with individual lifespan. Moreover, experimental manipulations of environmental quality that decreased BMRm and SMRm and shortened lifespan with 6 months (12%) did not affect the ageing of either metabolic trait. Females lived 2 months (4%) shorter than males, but none of the metabolic traits showed sex-specific differences at any age.Our finding that ageing patterns of metabolic rate vary depending on the ambient temperature illustrates the importance of studying ageing in an ecologically realistic setting.Our results add to the mounting evidence that within an organism ageing is an asynchronous process.


1960 ◽  
Vol 199 (2) ◽  
pp. 243-245 ◽  
Author(s):  
H. A. Leon ◽  
S. F. Cook

The oxygen consumption of male Long-Evans rats was determined at three different ambient temperatures in air and in an equivalent helium-oxygen mixture. It was found that when the ambient temperature is near the skin temperature of the rat, the effect of helium is insignificant. If the ambient temperature is lowered, helium induces an increased metabolism over air at the same temperature. Since helium has a thermal conductivity about six times greater than nitrogen, it is concluded that the accelerated metabolism is in response to the greater heat loss in the presence of helium and the magnitude of this response is proportional to the thermal gradient between the animal and the environment.


2008 ◽  
Vol 294 (3) ◽  
pp. R956-R965 ◽  
Author(s):  
Kevin J. Cummings ◽  
Chris Willie ◽  
Richard J. A. Wilson

Mild reductions in ambient temperature dramatically increase the mortality of neonatal mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP), with the majority of animals succumbing in the second postnatal week. During anesthesia-induced hypothermia, PACAP−/− mice at this age are also vulnerable to prolonged apneas and sudden death. From these observations, we hypothesized that before the onset of genotype-specific mortality and in the absence of anesthetic, the breathing of PACAP-deficient mice is more susceptible to mild reductions in ambient temperature than wild-type littermates. To test this hypothesis, we recorded breathing in one group of postnatal day 4 PACAP+/+, +/−, and −/− neonates (using unrestrained, flow-through plethysmography) and metabolic rate in a separate group (using indirect calorimetry), both of which were exposed acutely to ambient temperatures slightly below (29°C), slightly above (36°C), or at thermoneutrality (32°C). At 32°C, the breathing frequency of PACAP−/− neonates was significantly less than PACAP+/+ littermates. Reducing the ambient temperature to 29°C caused a significant suppression of tidal volume and ventilation in both PACAP+/− and −/− animals, while the tidal volume and ventilation of PACAP+/+ animals remained unchanged. Genotype had no effect on the ventilatory responses to ambient warming. At all three ambient temperatures, genotype had no influence on oxygen consumption or body temperature. These results suggest that during mild reductions in ambient temperature, PACAP is vital for the preservation of neonatal tidal volume and ventilation, but not for metabolic rate or body temperature.


Sign in / Sign up

Export Citation Format

Share Document