The determination of the residual strains and stresses in a tungsten inert gas welded sheet of IN718 superalloy using neutron diffraction

2000 ◽  
Vol 35 (4) ◽  
pp. 247-259 ◽  
Author(s):  
D Dye ◽  
S. M Roberts ◽  
P. J Withers ◽  
R. C Reed

The residual stress state in a tungsten inert gas (TIG) welded sheet of IN718, a high-strength nickel-based superalloy, has been characterized using neutron diffraction. The measurements were performed using a time-of-flight diffractometer, which allowed lattice strains from the γ-γ′ {111} and γ-γ′ {311} composite peaks to be compared with the Reitveld-refined spectra. Residual stresses were estimated using plane-specific values of Young's modulus and Poisson's ratio for the {311} and {111} peaks, and the macroscopic material response for the Reitveld-refined data. These values were obtained from a theoretical analysis of existing data after Kröner. The weld considered was an autogenous TIG weld 180mm long placed centrally on to a 2mm × 100mm × 200mm solution heat-treated sheet of IN718. The strain was mapped over the central 140mm of the plate; within this region, the measured strains were almost constant along the length, with the peak bulk longitudinal strain of 1700 × 10-6 detected 4mm from the weld centre, in the heat-affected zone. The corresponding peak longitudinal stress was 270 MPa, and the tensile region 11 mm wide, with the longitudinal residual stresses typically up to 2.5 times greater than those in the transverse direction. It was also found that, while in-weld stresses derived from analysis of single peaks may be incorrect due to textural and compositional effects, those derived from Reitveld refinement of the entire spectrum showed reasonable agreement with those obtained from incremental hole drilling measurements made with the Matthar-Soete method.

2010 ◽  
Vol 652 ◽  
pp. 111-115 ◽  
Author(s):  
D.G. Hattingh ◽  
Axel Steuwer ◽  
M. Neil James ◽  
I.N. Wedderburn

This paper presents microstructural, hardness and residual strain information for solid-state welds in creep-resistant Cr-Mo steel, made using the new local damage repair technique offered by friction taper stud welding (FTSW). The technique is suitable for making single welds to repair, for example, localised creep damage but can also be extended to deal with planar defects through the use of overlapping welds. Neutron diffraction was used to measure residual strains at a number of positions along a series of 5 overlapping FTS welds.


2008 ◽  
Vol 571-572 ◽  
pp. 21-26 ◽  
Author(s):  
Adele Carradò ◽  
D. Duriez ◽  
Laurent Barrallier ◽  
Sebastian Brück ◽  
Agnès Fabre ◽  
...  

Seamless tubes are used for many applications, e.g. in heating, transport gases and fluids, evaporators as well as medical use and as intermediate products for hydroforming and various mechanical applications, where the final dimensions normally are given by some cold drawing steps. The first process step – piercing of the billet, for example by extrusion or 3-roll-milling - typically results in ovality and eccentricity in the tube causing non-symmetric material flow during the cold drawing process, i.e. inhomogeneous deformation. Because of this non-axisymmetric deformation and of deviations over tube length caused by moving tools, this process step generates residual stresses. To understand the interconnections between the geometrical changes in the tubes and the residual stresses, the residual strains in a copper tube had been measured by neutron diffraction.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


1992 ◽  
Vol 36 ◽  
pp. 481-488 ◽  
Author(s):  
M. R. James ◽  
M. A. Bourke ◽  
J. A. Goldstone ◽  
A. C. Lawson

AbstractMetal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of three titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for this behavior has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state.


Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105587
Author(s):  
Ershad P. Zarandi ◽  
Tung L. Lee ◽  
Bjørn H. Skallerud

2008 ◽  
Vol 571-572 ◽  
pp. 309-314 ◽  
Author(s):  
Petr Lukáš ◽  
Miroslav Vrána ◽  
Jef Vleugels ◽  
Guy Anné ◽  
Omer Van der Biest

Graded Al2O3/Y-ZrO2 ceramics are developed to receive a construction material combining favourable properties of both constituent components, alumina (low wear rate, high hardness) and zirconia (high strength and toughness). The high performance of this material can be reached by optimising the internal residual stress distribution resulting mainly from phase specific stresses after cooling from the sintering temperature. For this purpose, non-destructive neutron diffraction mapping of residual stresses has been employed. However, the application of the conventional method does not provide straightforward results on macroscopic residual stresses. This experimental technique uses the crystal lattice plane as a built in microscopic strain gauge and the measured quantities are then lattice strains detected in each constituent phase separately. Based on these experimental resources, the paper proposes a procedure of separation of the residual macroscopic stress from phase specific stresses. The application of the presented method is demonstrated on functionally graded materials (FGM) prepared by electrophoretic deposition (EPD).


Author(s):  
Masaru Ogawa

In order to assure structural integrity for operating welded structures, it is necessary to evaluate crack growth rate and crack propagation direction for each observed crack non-destructively. Here, three dimensional (3D) welding residual stresses must be evaluated to predict crack propagation. Today, X-ray diffraction is used and the ultrasonic method has been proposed as non-destructive method to measure residual stresses. However, it is impossible to determine residual stress distributions in the thickness direction. Although residual stresses through a depth of several tens of millimeters can be evaluated non-destructively by neutron diffraction, it cannot be used as an on-site measurement technique. This is because neutron diffraction is only available in special irradiation facilities. Author pays attention to the bead flush method based on the eigenstrain methodology. In this method, 3D welding residual stresses are calculated by an elastic Finite Element Method (FEM) analysis from eigenstrains which are evaluated by an inverse analysis from released strains by strain gauges in the removal of the reinforcement of the weld. Here, the removal of the excess metal can be regarded as non-destructive treatment because toe of weld which may become crack starters can be eliminated. The effectiveness of the method has been proven for welded plates and pipes even with relatively lower bead height. In actual measurements, stress evaluation accuracy becomes poorer because measured values of strain gauges are affected by processing strains on the machined surface. In the previous studies, the author has developed the bead flush method that is free from the influence of the affecting strains by using residual strains on surface by X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation accuracy of residual stresses in this method is formulated, and it is shown numerically that inner welding residual stresses can be estimated accurately from the residual strains measured by X-ray diffraction.


2003 ◽  
Vol 38 (4) ◽  
pp. 349-365 ◽  
Author(s):  
R. C Wimpory ◽  
P. S May ◽  
N. P O'Dowd ◽  
G. A Webster ◽  
D J Smith ◽  
...  

Tensile welding residual stresses can, in combination with operating stresses, lead to premature failure of components by fatigue and/or fracture. It is therefore important that welding residual stresses are accounted for in design and assessment of engineering components and structures. In this work residual stress distributions, obtained from measurements on a number of ferritic steel T-plate weldments using the neutron diffraction technique and the deep-hole drilling method, are presented. It has been found that the residual stress distributions for three different plate sizes are of similar shape when distances are normalized by plate thickness. It has also been found that the conservatisms in residual stress profiles recommended in current fracture mechanics-based safety assessment procedures can be significant—of yield strength magnitude in certain cases. Based on the data presented here a new, less-conservative transverse residual stress upper bound distribution is proposed for the T-plate weldment geometry. The extent of the plastic zone developed during the welding process has also been estimated by use of Vickers hardness and neutron diffraction measurements. It has been found that the measured plastic zone sizes are considerably smaller than those predicted by existing methods. The implications of the use of the plastic zone size as an indicator of the residual stress distributions are discussed.


Author(s):  
S. Hossain ◽  
C. E. Truman ◽  
D. J. Smith ◽  
M. R. Daymond

This paper presents results from an experimental and numerical study examining the creation of highly triaxial residual stresses in stainless steel. This was motivated by a need to model and understand creep in aged power plant. The residual stresses were introduced by rapid spray water quenching of heated solid stainless steel spheres and cylinders. Finite element (FE) simulations predicted high compressive residual stresses around the surface of the specimens and tensile residual stresses near the centre. Surface residual stresses were measured using the incremental centre-hole drilling (ICHD) technique. Neutron diffraction (ND) was used to measure the interior residual stresses. The measurements were in good agreement with FE predictions. The ND measurements confirmed that a highly triaxial residual stress state existed in the core of the specimens.


2017 ◽  
Vol 905 ◽  
pp. 101-106
Author(s):  
Hadi Moztarzadeh ◽  
Darren J. Hughes ◽  
Sampan Seth ◽  
Elspeth Keating ◽  
Ercihan Kiraci ◽  
...  

Neutron diffraction and curvature measurements were conducted to investigate the residual stresses associated with Plasma Transferred Arc Cladding (PTA) of Ti-6Al-4V on a substrate of the same material. The wire-feed PTA coupled with 3-axis CNC machine was used as an Additive Manufacturing (AM) technique to build parts. A combination of the process parameters was chosen to investigate their effects on residual stress evolution. Neutron Diffraction (ND) measurements of residual strains were performed on the SALSA instrument at the Institut Laue-Langevin (ILL), Grenoble, France. Longitudinal stresses were also inferred by using a Coordinate Measurement Machine (CMM) and Euler-Bernoulli beam theorem. Furthermore, Optical Microscopy (OM) of the cross section of the parts was used to analyse the microstructural evolution. The results show the effect of shorter and longer ‘dwell time’ between layers on the evolution of residual stresses.


Sign in / Sign up

Export Citation Format

Share Document