Rubber model for adhesive lap joints

1973 ◽  
Vol 8 (1) ◽  
pp. 52-57 ◽  
Author(s):  
R D Adams ◽  
S H Chambers ◽  
P H A Del Strother ◽  
N A Peppiatt

Models of adhesive joints have been constructed in which hard rubber has been used as the adherends and relatively soft foam rubber as the adhesive. The models were scaled to represent various types of lap joint. Very good agreement was obtained when the experimental results were compared with available theory, showing that the model accurately represented the shear-stress distribution in the adhesive. Two joints are shown in which the adhesive thickness was profiled (one optimally, the other linearly) to reduce or eliminate the shear-stress concentration at the ends.

2015 ◽  
Vol 1088 ◽  
pp. 758-762
Author(s):  
Xiao Cong He

This paper deals with the stress discontinuities in shear stress distribution of adhesive joints. The three-dimensional finite element analysis (FEA) software was used to model the joints and predict the shear stress distribution along the whole beam. The FEA results indicated that there are stress discontinuities existing in the shear stress distribution within adhesive layer and adherends at the lower interface and the upper interface of the boded section. The numerical values of the shear stress concentration at key locations of the joints and the stress concentration ratio are discussed.


1974 ◽  
Vol 9 (3) ◽  
pp. 185-196 ◽  
Author(s):  
R D Adams ◽  
N A Peppiatt

Stresses in a standard metal-to-metal adhesive-bonded lap joint are analysed by a two-dimensional finite-element method and comparisons are made with previous analyses. Particular attention is paid to the stresses at the ends of the adhesive layer. Unlike previous work, which assumes the adhesive to have a square edge, the adhesive spew is treated as a triangular fillet. The highest stresses exist at the adherend corner within the spew. Linear elastic behaviour is assumed throughout. A rubber model is reported which confirms these results physically. Good agreement was also obtained between some practical results and the finite-element predictions.


1996 ◽  
Vol 12 (03) ◽  
pp. 167-171
Author(s):  
G. Bezine ◽  
A. Roy ◽  
A. Vinet

A finite-element technique is used to predict the shear stress and normal stress distribution in adherends for polycarbonate/polycarbonate single lap joints subjected to axial loads. Numerical and photoelastic results are compared so that a validation of the numerical model is obtained. The influences on stresses of the overlap length and the shape of the adherends are studied.


The type of deformation under investigation is indicated by fig. 1. A rectangular plate ABCD is deformed into the shape A'B'C'D'. The two opposing edges AB, CD are shifted horizontally without alteration of length into the position A'B', C'D', the other boundaries AD, BC being kept free from external stress. In a paper which appeared in the 'Proc. Royal Society', December 28, 1911, Prof. E. G. Coker investigated this same type of deformation using optical methods to determine the distribution of stress along the centre line OX. He found that if the plate was square the shear stress along OX was distributed in a munner which was approximately parabolic. As the ratio of AD to AB decreased the curve of distribution first of all became flat-topped, and for yet smaller ratios two distinct humps made their appearance.


1953 ◽  
Vol 20 (3) ◽  
pp. 355-364
Author(s):  
R. W. Cornell

Abstract A variation and extension of Goland and Reissner’s (1) method of approach is presented for determining the stresses in cemented lap joints by assuming that the two lap-joint plates act like simple beams and the more elastic cement layer is an infinite number of shear and tension springs. Differential equations are set up which describe the transfer of the load in one beam through the springs to the other beam. From the solution of these differential equations a fairly complete analysis of the stresses in the lap joint is obtained. The spring-beam analogy method is applied to a particular type of lap joint, and an analysis of the stresses at the discontinuity, stress distributions, and the effects of variables on these stresses are presented. In order to check the analytical results, they are compared to photoelastic and brittle lacquer experimental results. The spring-beam analogy solution was found to give a fairly accurate presentation of the stresses in the lap joint investigated and should be useful in analyzing other cemented lap-joint structures.


1998 ◽  
Vol 120 (1) ◽  
pp. 106-113 ◽  
Author(s):  
T. Reinikainen ◽  
M. Poech ◽  
M. Krumm ◽  
J. Kivilahti

Solder alloys are commonly tested with shear tests to study their mechanical properties or low-cycle fatigue performance. In this work, the suitability of various shear tests for quantitative solder-joint testing is investigated by means of the finite element method. The stress state and stress distribution in the following well known geometries are studied: the double-lap test, the ring and plug test, the losipescu test, and two single-lap tests. A new test geometry, the grooved-lap test, is introduced and compared to the conventional tests. The results of simulations with an elastic material model in plane-strain indicate that considerable differences in the purity of the state of shear (rε = −ε1/ε3) as well as in the stress distribution in the joint exist among the shear tests. However, simulations with a nonlinear material model show that stress inhomogenities are smoothed by the plastic and creep deformation occurring in the joint. Optical measurements of the deformation of real single-lap and grooved-lap joints show that the single-lap joint rotates slightly during creep, whereas in the grooved-lap joint no rotation can be detected. This confirms the simulation results that in the single-lap test the initially nonuniform stress distribution changes during creep, and in the grooved-lap test the uniform stress distribution remains constant through the test.


Author(s):  
Terry E. Shoup ◽  
Michael Drew

This paper presents two easy-to-use spreadsheet modules in Microsoft Excel to assist with the design of adhesive joints. The modules make use of embedded Visual Basic numerical algorithms to give assistance with the selection of both the adhesive type and the geometric configuration of an adhesive lap joint. These modules facilitate the quick implementation of designs that are more accurate than was previously possible by traditional design methods. The method will be particularly helpful to students and inexperienced designers who first encounter the need to design adhesive joints. The paper also includes an example application to illustrate the use of the modules.


1999 ◽  
Author(s):  
K. Iyer ◽  
C. A. Rubin ◽  
G. T. Hahn

Abstract Three-dimensional finite element analyses (FEA) of an elastic, single rivet-row, aluminum alloy lap joint are presented. The effects of rivet geometry (countersinking), rivet material and interfacial friction coefficient are examined. Interference and lateral clamping are not treated. Panels loaded in tension with vacant, tapered holes are also examined. Load transfer through the joint, the joint compliance, rivet-tilt, the local slips at rivet-panel and panel-panel interfaces, contact pressures and local stresses are evaluated. Relations between these features and the contact and bending driven stress concentration are clarified. The work shows that the stress concentration factor, rivet-panel slips, peak stresses, contact pressures and rivet deformation are all related, and increase with the severity of the countersink. Panel bending, rivet tilt and countersinking introduce large, out-of-plane stress gradients and shift the peak stresses to the interior surface of the countersunk panel. The results demonstrate the importance of out-of-plane distortions in accounting for the behavior of the riveted lap joints. Three opportunities are identified for improving lap joint performance without increasing the weight.


Sign in / Sign up

Export Citation Format

Share Document