Stresses at openings in the torispherical end closure of a pressure vessel

1973 ◽  
Vol 8 (3) ◽  
pp. 191-199 ◽  
Author(s):  
R Kitching ◽  
K T Lau

In the design of torispherical heads for cylindrical pressure vessels, it would often be desirable to position openings or branch connections in the vicinity of the toroidal portion of the shell, but from strength considerations it is normal practice to avoid doing so. An 18 inch inside-diameter model vessel of this type, with a nominal inside toroidal radius of 1.25 in was used for making strain and hence stress measurements in the shell due to internal pressure. Four unreinforced openings of 3 inch diameter were placed at different positions in the torispherical end and an elastic stress distribution for the shell around each opening was obtained. Distributions of elastic stresses in the shell were compared for the different opening positions with those in the unpierced shell in the toroidal region. Plastic deformations were measured in an over-pressure test and a plastic limit pressure was estimated.

1981 ◽  
Vol 16 (3) ◽  
pp. 171-186 ◽  
Author(s):  
P Stanley ◽  
T D Campbell

Very thin cylindrical pressure vessels with torispherical end-closures have been tested under internal pressure until buckles developed in the knuckles of the ends. These were prototype vessels in an austenitic stainless steel. The preparation of the ends and the closed test vessels is outlined, and the instrumentation, test installation, and test procedure are described. Results are given and discussed for three typical ends (diameters 54, 81, and 108in.; thickness to diameter ratios 0.00237, 0.00158, and 0.00119). These include measured thickness and curvature distributions, strain data and the derived elastic stress indices, and pole deflection measurements. Some details of the observed time-dependent plasticity (or ‘cold creep’) are given. Details of two types of buckle that developed eventually in the vessel ends are also reported.


1959 ◽  
Vol 81 (1) ◽  
pp. 51-62 ◽  
Author(s):  
G. D. Galletly

It has recently become apparent, through a rigorous stress analysis of a specific case that designing torispherical shells by the current edition of the ASME Code on Unfired Pressure Vessels can lead to failure during proof-testing of the vessel. The purpose of the present paper is to show in what respects the Code fails to give accurate results. As an illustrative example, a hypothetical pressure vessel with a torispherical head having a diameter-thickness ratio of 440 was selected. The supports of the vessel were considered to be either on the main cylinder or around the torus. The vessel was subjected to internal pressure and the elastic stresses in it were determined rigorously and by the Code. A comparison of the two revealed that the Code predicted stresses in the head which were less than one half of those actually occurring. Furthermore, the Code gave no indication of the presence of high compressive circumferential direct stresses which exceeded 30,000 psi for practically the entire torus. If the head had been fabricated using a steel with a yield point of 30,000 psi, then a limit analysis shows that it would have failed or undergone large deformations, whereas the Code would have predicted that it was safe. The Code’s rules for torispherical heads are thus in need of revision for certain geometries. The implications of the foregoing results are currently being studied by the ASME; in the interim, however, designers should exercise care in applying the Code to torispherical shells. It is also shown in the paper that the use of the membrane state as a particular solution of the differential equations is not a good approximation for toroidal shells of the type considered.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gongfeng Jiang ◽  
Gang Chen ◽  
Liang Sun ◽  
Yiliang Zhang ◽  
Xiaoliang Jia ◽  
...  

Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.


1981 ◽  
Vol 103 (1) ◽  
pp. 107-111
Author(s):  
D. P. Updike

Elastic stress analysis of a right angle tee branch pipe connection of two pipes of identical diameter and thickness connected through 45-deg chamfer corner sections is developed for internal pressure loading. Stresses in the crotch portion of the vessel are determined. These results are presented in the form of a table of factors useful for rapid calculation of approximate values of the peak stresses. The existence of a structurally optimum size of chamfer is demonstrated.


1972 ◽  
Vol 11 (63) ◽  
pp. 407-414 ◽  
Author(s):  
F. W. Smith

Abstract A two-dimensional finite element computer program has been used to compute the elastic stress distribution in realistic multi-layered snow packs. Computations have been done on three-layered and five-layered snow packs intended to simulate conditions on the Lift Gully at Berthoud Pass, Colorado. Calculations have been performed to determine the effect of a layer of new snow and the effect of a weak sub-layer. Stress levels were obtained which are reasonable compared with available snow strength data.


1996 ◽  
Vol 118 (4) ◽  
pp. 429-433
Author(s):  
H. Chen ◽  
J. Jin ◽  
J. Yu

Results from finite element analysis were used to show that the stress index kσ and the nondimensionalized highly stressed hub length kh of a flat head with a round corner in a pressure vessel subjected to internal pressure are functions of three dimensionless parameters: λ ≡ h/dt, η ≡ t/d, and ρ ≡ r/t. Approximate formulas for estimating kσ and kh from λ, η, and ρ p are given. The formulas can be used for determining a suitable fillet radius for a flat head in order to reduce the fabricating cost and to keep the stress intensity at the fillet under an acceptable limit.


Author(s):  
Yang-chun Deng ◽  
Gang Chen

To save material, the safety factor of pressure vessel design standards is gradually decreased from 5.0 to 2.4 in ASME Boiler and Pressure Vessel Codes. So the design methods of pressure vessel should be more rationalized. Considering effects of material strain hardening and non-linear structural deformation, the elastic-plastic stress analysis is the most suitable for pressure vessels design at present. This paper is based on elastic-plastic theory and considers material strain hardening and structural deformation effects. Elastic-plastic stress analyses of pressure vessels are summarized. Firstly, expressions of load and structural deformation relationship were introduced for thin-walled cylindrical and spherical vessels under internal pressure. Secondly, the plastic instability for thin-walled cylindrical and spherical vessels under internal pressure were analysed. Thirdly, to prevent pressure vessels from local failure, the ductile fracture strain of materials was discussed.


1972 ◽  
Vol 186 (1) ◽  
pp. 45-52 ◽  
Author(s):  
W. A. Macfarlane ◽  
G. E. Findlay

A fundamental examination has been made of the post-yield behaviour at discontinuities in pressure vessels with a view to determining shakedown loads. The results of this indicate that a simple graphical construction can be devised whereby such loads are easily determined with only a knowledge of the elastic stresses and a yield criterion; in particular, a ‘five line construction’ method is suggested which can be applied to a wide range of engineering stress problems. The method is exemplified by a study of shakedown loads for both flush cylinder-sphere and cylinder-cylinder intersections under internal pressure, and the implications of the results in terms of current design philosophies are discussed.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Husain J. Al-Gahtani ◽  
Mahmoud Naffa'a

Pressure vessels that undergo repairs are normally pressure tested to verify their structural integrity before returning into service. Conventionally, the entire vessel is pressure tested, according to the relevant construction code. In this paper, partitioning the pressure vessel is suggested as an equivalent alternative test arrangement, where pressure testing is limited to the zone where a repair has been performed. Use of such an arrangement would alleviate potential concerns associated with the conventional testing method. Procedures are provided to specify the position of the partition relative to the repair location, in order to maintain the state-of-stress to that achieved in a conventional pressure test. Validity of this approach has been demonstrated for a repaired full-circumferential welded joint in the wall of a cylindrical pressure vessel.


Sign in / Sign up

Export Citation Format

Share Document