An approximate analysis of infinitesimal deformations of bonded elastic mounts

1988 ◽  
Vol 23 (3) ◽  
pp. 115-120 ◽  
Author(s):  
M H B M Shariff

An approximate simple theoretical solution is developed for infinitesimal plane and axisymmetric strain deformations for blocks of elastic material with Poisson's ratio between 0 and 0.5 bonded to rigid end plates. The explicit form of solution, developed for shape factor, S, between 0 and ∞, is easy to use and compares well with published experimental results. It is also comparable with previous theoretical investigations and expected behaviour.

1992 ◽  
Vol 59 (4) ◽  
pp. 744-746 ◽  
Author(s):  
R. S. Lakes

In this paper we analyze Saint-Venant end effects for materials with negative Poisson ’s ratios. We present an example of slow decay of stress arising from selfequilibrated stress at the end of a circular cylinder of elastic material with a negative Poisson’s ratio. By contrast, a sandwich panel containing rigid face sheets and a compliant core exhibits no anomalous effects for negative Poisson’s ratio, but exhibits slow stress decay for core Poisson’s ratio approaching 0.5. In sandwich panels with stiff but not perfectly rigid face sheets, slow decay of stress is known to occur; a negative Poisson’s ratio results in end stress decay, which is faster than it would be otherwise.


Holzforschung ◽  
2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Hiroshi Yoshihara

Abstract In this research, Poisson's ratio of plywood as obtained by a tension test was examined by varying the width of the specimen. The tension tests were conducted on five-plywood of lauan (Shorea sp.) with various widths, and Young's moduli and Poisson's ratios of the specimens were measured. Finite element calculations were independently conducted. A comparison of the experimental results with those of finite element analysis revealed that Young's modulus could be obtained properly when the width of the plywood strip varied. In contrast, the width of the plywood strip should be large enough to determine Poisson's ratio properly.


1977 ◽  
Vol 50 (1) ◽  
pp. 186-193
Author(s):  
B. P. Holownia

Abstract The comparison between theoretical and experimental results of the temperature distribution in bonded cyclindrical rubber blocks due to compressive cyclic loading was largely dependent on the value of Poisson's ratio. It was found that, for thin rubber blocks (D/h>6), the third significant figure in the value of v appreciably altered the temperature distribution, while for thick blocks (D/h<4), the same change in v had much smaller effect on the temperature distribution within the rubber block. The theoretical analysis used in the paper can easily be adapted for blocks of different geometries, and hence the temperature distribution within a desirable limit can be achieved by changing the geometry of the rubber block.


1972 ◽  
Vol 9 (4) ◽  
pp. 467-476 ◽  
Author(s):  
P. T. Brown ◽  
R. E. Gibson

An examination has been made of the behavior of a half space of elastic material of constant Poisson's ratio, whose Young's modulus increases linearly with depth, and which is subject to a strip or circle of uniform load. Poisson's ratio was considered in the range zero to one-half, and the surface modulus ranged from zero to the value corresponding to a homogeneous material.Numerical values are presented for vertical surface displacement due to a load uniformly distributed over a circular area for Poisson's ratio = 1/2, 1/3 and 0, and for a wide range of inhomogeneity.


Author(s):  
Rahav Gowtham Venkateswaran ◽  
Ursula Kowalsky ◽  
Dieter Dinkler

AbstractRecently, the discrete element method is increasingly being used for describing the behaviour of isotropic linear elastic materials. However, the common bond models employed to describe the interaction between particles restrict the range of Poisson’s ratio that can be represented. In this paper, to overcome the restriction, a modified bond model that includes the coupling of shear strain energy of neighbouring bonds is proposed. The coupling is described by a multi-bond term that enables the model to distinguish between shear deformations and rigid-body rotations. The positive definiteness of the strain energy function of the modified bond model is verified. To validate the model, uniaxial tension, pure shear and pure bending tests are performed. Comparison of the particle displacements with continuum mechanics solution demonstrates the ability of the model to describe the behaviour of isotropic linear elastic material for values of Poisson’s ratio in the range $$0 \le \nu < 0.5$$ 0 ≤ ν < 0.5 .


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mine Akgun ◽  
Recep Eren ◽  
Fatih Suvari ◽  
Tugba Yurdakul

Abstract This study presents the effects of a novel plied yarn structure consisting of different yarn components and yarn twist levels on the Poisson's ratio and auxetic behavior of yarns. The plied yarn structures are formed with bulky and soft yarn components (helical plied yarn [HPY], braided yarn, and monofilament latex yarn) and stiff yarn components (such as high tenacity [HT] and polyvinyl chloride [PVC]-coated polyester yarns) to achieve auxetic behavior. Experimental results showed that as the level of yarn twist increased, the Poisson's ratios and the tensile modulus values of the plied yarns decreased, but the elongation values increased. A negative Poisson's ratio (NPR) was obtained in HT–latex and PVC–latex plied yarns with a low twist level. The plied yarns formed with braid–HPY and braid–braid components gave partial NPR under tension. A similar result was achieved for yarns with HT–latex and PVC–latex components. Since partial NPR was seen in novel plied yarns with braided and HPY components, it is concluded that yarns formed with bulky–bulky yarn components could give an auxetic performance under tension.


Textiles ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-15
Author(s):  
Shivangi Shukla ◽  
Bijoya Kumar Behera ◽  
Rajesh Kumar Mishra ◽  
Martin Tichý ◽  
Viktor Kolář ◽  
...  

The current research is focused on the design and development of auxetic woven structures. Finite element analysis based on computational modeling and prediction of axial strain as well as Poisson’s ratio was carried out. Further, an analytical model was used to calculate the same parameters by a foldable zig-zag geometry. In the analytical model, Poisson’s ratio is based on the crimp percentage, bending modulus, yarn spacing, and coefficient of friction. In this yarn, properties and fabric parameters were also considered. Experimental samples were evaluated for the actual performance of the defined auxetic material. Auxetic fabric was developed with foldable strips created in a zig-zag way in the vertical (warp) direction. It is based on the principle that when the fabric is stretched, the unfolding of the folds takes place, leading to an increase in transverse dimensions. Both the analytical and computational models gave close predictions to the experimental results. The fabric with foldable strips created in a zig-zag way in the vertical (warp) direction produced negative Poisson’s ratio (NPR), up to 8.7% of axial strain, and a maximum Poisson’s ratio of −0.41 produced at an axial strain of around 1%. The error percentage in the analytical model was 37.14% for the experimental results. The computational results also predict the Poisson’s ratio with an error percentage of 22.26%. Such predictions are useful for estimating the performance of auxetic woven structures in composite reinforcement. The auxetic structure exhibits remarkable stress-strain behavior in the longitudinal as well as transverse directions. This performance is useful for energy absorption in composite reinforcement.


1973 ◽  
Vol 46 (1) ◽  
pp. 286-293 ◽  
Author(s):  
S. R. Moghe ◽  
H. F. Neff

Abstract The experimental results and the widely used empirical formula (E/EApp)=(1+βS2)−1+(E/B) for the compression modulus are compared with analytical solutions obtained by Moghe and Neff. It is shown that the empirical formula does not represent the data adequately, particularly for large and small shape factors. It is also shown that the variation in β in the empirical formula arises due to the inadequacy of the representation rather than the thixotropic behavior as claimed.


Sign in / Sign up

Export Citation Format

Share Document