Three-dimensional inverse heat transfer analysis during the grinding process

Author(s):  
C-C Wang ◽  
C-K Chen

A three-dimensional inverse analysis is adopted to estimate the unknown conditions on the workpiece surface during a grinding process. The numerical method (linear least-squares error method) requires just one iteration and can solve the inverse problems given only the temperature information at a finite number of locations beneath the working surface within a specified time domain. Results show that the heat source into the grinding zone and the heat transfer coefficient in the cooling region can be obtained by the proposed method even when under the influence of measured errors. Furthermore, it is found that the estimated heat transfer coefficient is more sensitive than the heat source to different measured errors and depths. Analyses of the temperature, heat distribution and heat transfer coefficient of the workpiece will help prevent the occurrence of thermal damage to the workpiece, which are caused by the high temperatures generated during the grinding process.

1979 ◽  
Vol 101 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Y. Saito ◽  
N. Nishiwaki ◽  
Y. Ito

The thermal boundary condition around the workpiece surface is one of important factors to analyze the thermal deformation of a workpiece, which is in close relation to the machining, accuracy of grinding. The heat dissipation from the workpiece surface which is influenced by the flow pattern, may govern this thermal boundary condition. In consequence, it is necessary to clarify the convection heat transfer coefficient and the flow pattern of air and/or grinding fluid around surroundings of a rotating grinding wheel and of a workpiece. Here experiments were carried out in a surface grinding process to measure the flow velocity, wall pressure and local heat transfer by changing the porosity of the grinding wheel. The air blowing out from the grinding wheel which is effected by the porosity may be considered to have large influences on the local heat transfer coefficient, which is found to be neither symmetric nor uniform over the workpiece surface.


Author(s):  
V. P. Malapure ◽  
A. Bhattacharya ◽  
Sushanta K. Mitra

This paper presents a three-dimensional numerical analysis of flow and heat transfer over plate fins in a compact heat exchanger used as a radiator in the automotive industry. The aim of this study is to predict the heat transfer and pressure drop in the radiator. FLUENT 6.1 is used for simulation. Several cases are simulated in order to investigate the coolant temperature drop, heat transfer coefficient for the coolant and the air side along with the corresponding pressure drop. It is observed that the heat transfer and pressure drop fairly agree with experimental data. It is also found that the fin temperature depends on the frontal air velocity and the coolant side heat transfer coefficient is in good agreement with classical Dittus–Boelter correlation. It is also found that the specific dissipation increases with the coolant and the air flow rates. This work can further be extended to perform optimization study for radiator design.


2021 ◽  
Author(s):  
LORENZ ZACHERL ◽  
ALLYSON FONTES ◽  
FARJAD SHADMEHRI

In-situ manufacturing of thermoplastic composites using the Automated Fiber Placement (AFP) process consists of heating, consolidation, and solidification steps. During the heating step using Hot Gas Torch (HGT) as a moving heat source, the incoming tape and the substrate are heated up to a temperature above the melting point of the thermoplastic matrix. The convective heat transfer occurs between the hot gas flow and the composites in which the convective heat transfer coefficient h plays an important role in the heat transfer mechanism, which in turn significantly affects temperature distribution along the length, width, and through the thickness of the deposited layers. Temperature is the most important process parameter in AFP in-situ consolidation that affects bonding quality, crystallization, and consolidation. Although it is well known that the convective heat transfer coefficient h is not constant and has a distribution, most studies have assumed a constant value for h for heat transfer analysis, which leads to discrepancies between numerical and experimental results. It has already been shown by the authors that, unlike other studies assuming constant h value, using a distribution function to approximate the convective heat transfer coefficient h in a three-dimensional finite element transient heat transfer analysis the temperature distribution can be well predicted in thermoplastic composite parts and matches experimental data. In this study, the use of the proposed h distribution function is analysed and validated by several measuring points. Furthermore, experimental trials are carried out to validate the results from the simulation.


1996 ◽  
Vol 118 (1) ◽  
pp. 143-149 ◽  
Author(s):  
C. Guo ◽  
S. Malkin

Distributions of the heat flux to the workpiece and the convection heat transfer coefficient on the workpiece surface during straight surface grinding are estimated from measured temperatures in the workpiece subsurface using inverse heat transfer methods developed in Part 1. The results indicate that the heat flux to the workpiece is distributed approximately linearly (triangular heat source) along the grinding zone with about 70 to 75 percent of the total energy transported as heat to the workpiece for grinding of steels with a conventional aluminum oxide wheel and only about 20 percent with CBN superabrasive wheels. The wheel-workpiece contact length corresponding to the region of positive heat flux to the workpiece is found to be generally close to but slightly longer than the theoretical geometric contact length. The convection heat transfer coefficient for cooling by the applied grinding fluid is greatest just behind the trailing edge of the grinding zone where fluid is directly applied, and negligible ahead of the grinding zone.


Author(s):  
Kang Liu ◽  
Titan C. Paul ◽  
Leo A. Carrilho ◽  
Jamil A. Khan

The experimental investigations were carried out of a pressurized water nuclear reactor (PWR) with enhanced surface using different concentration (0.5 and 2.0 vol%) of ZnO/DI-water based nanofluids as a coolant. The experimental setup consisted of a flow loop with a nuclear fuel rod section that was heated by electrical current. The fuel rod surfaces were termed as two-dimensional surface roughness (square transverse ribbed surface) and three-dimensional surface roughness (diamond shaped blocks). The variation in temperature of nuclear fuel rod was measured along the length of a specified section. Heat transfer coefficient was calculated by measuring heat flux and temperature differences between surface and bulk fluid. The experimental results of nanofluids were compared with the coolant as a DI-water data. The maximum heat transfer coefficient enhancement was achieved 33% at Re = 1.15 × 105 for fuel rod with three-dimensional surface roughness using 2.0 vol% nanofluids compared to DI-water.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


Author(s):  
Majid Karami ◽  
Somayeh Davoodabadi Farahani ◽  
Farshad Kowsary ◽  
Amir Mosavi

In this research, a novel method to investigation the transient heat transfer coefficient in a channel is suggested experimentally, in which the water flow, itself, is considered both just liquid phase and liquid-vapor phase. The experiments were designed to predict the temporal and spatial resolution of Nusselt number. The inverse technique method is non-intrusive, in which time history of temperature is measured, using some thermocouples within the wall to provide input data for the inverse algorithm. The conjugate gradient method is used mostly as an inverse method. The temporal and spatial changes of heat flux, Nusselt number, vapor quality, convection number, and boiling number have all been estimated, showing that the estimated local Nusselt numbers of flow for without and with phase change are close to those predicted from the correlations of Churchill and Ozoe (1973) and Kandlikar (1990), respectively. This study suggests that the extended inverse technique can be successfully utilized to calculate the local time-dependent heat transfer coefficient of boiling flow.


Sign in / Sign up

Export Citation Format

Share Document