A study of the characteristics of a one-degree-of-freedom positioning device using spring-mounted piezoelectric actuators

Author(s):  
Y-T Liu ◽  
C-K Wang

This article presents the actuating performance of a one-degree-of-freedom (DOF) positioning device using spring-mounted piezoelectric (PZT) actuators. To employ a spring with a preset compression, the operational range of a PZT actuator could be simply enlarged, and a sliding table actuated by PZT impact force might feature long stroke and high-precision positioning ability. An experimental set-up consisting of two spring-mounted PZT actuators was configured to examine the actuating characteristics. According to experimental results, a sliding table with a heavy mass of 172 g could be actuated to move with a step motion ranging from 15 nm to 81 μm by only one single actuation of the PZT actuator, and with a maximum travelling speed of 3.47 mm/s by continuous actuation. In addition to experimental examinations, a dynamic model was established and verified as effective in describing the actuating behaviours through numerical examinations.

1995 ◽  
Author(s):  
Robert Bamford ◽  
C Kuo ◽  
Robert Glaser ◽  
Ben Wada
Keyword(s):  

2021 ◽  
pp. 1-29
Author(s):  
Ahmet Dindar ◽  
Amit Chimanpure ◽  
Ahmet Kahraman

Abstract A tribo-dynamic model of ball bearings is proposed to predict their load-dependent (mechanical) power losses. The model combines (i) a transient, point contact mixed elastohydrodynamic lubrication (EHL) formulation to simulate the mechanics of the load carrying lubricated ball-race interfaces, and (ii) a singularity-free dynamics model, and establishes the two-way coupling between them that dictates power losses. The dynamic model employs a vectoral formulation with Euler parameters. The EHL model is capable of capturing two-dimensional contact kinematics, velocity variations across the contact as well as asperity interactions of rough contact surfaces. Resultant contact surface shear distributions are processed to predict mechanical power losses of example ball bearings operating under combined radial and axial forces. An experimental set-up is introduced for measurement of the power losses of rolling-element bearings. Sets of measurements taken by using the same example ball bearings are compared to those predicted by the model to assess its accuracy in predicting mechanical power loss of a ball bearing within wide ranges of axial and radial forces.


Author(s):  
Qian Wang ◽  
Chenkun Qi ◽  
Feng Gao ◽  
Xianchao Zhao ◽  
Anye Ren ◽  
...  

The contact process of a space docking device needs verification before launching. The verification cannot only rely on the software simulation since the contact dynamic models are not accurate enough yet, especially when the geometric shape of the device is complex. Hardware-in-the-loop simulation is a choice to perform the ground test, where the contact dynamic model is replaced by a real device and the real contact occurs. However, the Hardware-in-the-loop simulation suffers from energy increase and instability since time delay is unavoidable. The existing delay compensation methods are mainly focused on a uniaxial or three-dimensional contact. In this paper, a force-based delay compensation method is proposed for the hardware-in-the-loop simulation of a six degree-of-freedom space contact. A six degree-of-freedom dynamic model of the spacecraft motion is derived, and a six degree-of-freedom delay compensation method is proposed. The delay is divided into track delay and measurement delay, which are compensated individually. Experiment results show that the proposed delay compensation method is effective for the six degree-of-freedom space contact.


Author(s):  
Mohammad Amin Saeedi ◽  
Reza Kazemi ◽  
Shahram Azadi

In this paper, in order to improve the roll stability of an articulated vehicle carrying a liquid, an active roll control system is utilized by employing two different control methods. First, a 16-degree-of-freedom non-linear dynamic model of an articulated vehicle is developed. Next, the dynamic interaction of the liquid cargo with the vehicle is investigated by integrating a quasi-dynamic liquid sloshing model with a tractor–semitrailer model. Initially, to improve the lateral dynamic stability of the vehicle, an active roll control system is developed using classical integral sliding-mode control. The active anti-roll bar is employed as an actuator to generate the roll moment. Next, in order to verify the classical sliding-mode control performance and to eliminate its chattering, the backstepping method and the sliding-mode control method are combined. Subsequently, backstepping sliding-mode control as a new robust control is implemented. Moreover, in order to prevent both yaw instability and jackknifing, an active steering control system is designed on the basis of a simplified three-degree-of-freedom dynamic model of an articulated vehicle carrying a liquid. In the introduced system, the yaw rate of the tractor, the lateral velocity of the tractor and the articulation angle are considered as the three state variables which are targeted in order to track their desired values. The simulation results show that the combined proposed roll control system is more successful in achieving target control and reducing the lateral load transfer ratio than is classical sliding-mode control. A more detailed investigation confirms that the designed active steering system improves both the lateral stability of the vehicle and its handling, in particular during a severe lane-change manoeuvre in which considerable instability occurs.


Author(s):  
Hachmia Faqihi ◽  
Khalid Benjelloun ◽  
Maarouf Saad ◽  
Mohammed Benbrahim ◽  
M. Nabil Kabbaj

<p>One of the most efficient approaches to control a multiple degree-of-freedom robot manipulator is the virtual decomposition control (VDC). However, the use of the re- gressor technique in the conventionnal VDC to estimate the unknown and uncertaities parameters present some limitations. In this paper, a new control strategy of n-DoF robot manipulator, refering to reorganizing the equation of the VDC using the time delay estimation (TDE) have been investigated. In the proposed controller, the VDC equations are rearranged using the TDE for unknown dynamic estimations. Hence, the decoupling dynamic model for the manipulator is established. The stability of the overall system is proved based on Lyapunov theory. The effectiveness of the proposed controller is proved via case study performed on 7-DoF robot manipulator and com- pared to the conventionnal Regressor-based VDC according to some evalution criteria. The results carry out the validity and efficiency of the proposed time delay estimation- based virtual decomposition controller (TD-VDC) approach.</p>


2012 ◽  
Vol 460 ◽  
pp. 160-164 ◽  
Author(s):  
Song He Zhang ◽  
Yue Gang Luo ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the three-span rotor-bearing system with rub-impact fault was set up. The influence to nonlinear dynamics behaviors of the rotor-bearing system that induced by rub-impact of one disc, two discs and three discs were numerically studied. The main influence of the rotor system response by the rub-impact faults are in the supercritical rotate speed. There are mutations of amplitudes in the responses of second and third spans in supercritical rotate speed when rub-impact with one disc, and there are chaotic windows in the response of first span, and jumping changes in second and third spans when rub-impact with two or three discs.


Author(s):  
R. A. Hart ◽  
N. D. Ebrahimi

Abstract In Part 1 of this report, we described the overall objective of the investigation; that is, the formulation of a dynamic model for determining the time response of a multi-legged robotic vehicle traveling on a variable-topographic terrain. Specifically, we developed expressions for the joint variables, and their rates, which are essential for describing the system’s links orientations, velocities, and accelerations. This procedure enabled us to determine the kinematic quantities associated with the entire vehicular system in accordance with the Newton-Euler method. In the present paper, we formulate the kinetic equations for the multi-degree-of-freedom leg assemblies, the rigid wheels, and the platform of the vehicle to achieve the prescribed motion and corresponding configuration of the system.


Sign in / Sign up

Export Citation Format

Share Document