scholarly journals Elastic follow-up and relaxation of residual stresses

Author(s):  
D J Smith ◽  
J McFadden ◽  
S Hadidimoud ◽  
A J Smith ◽  
A J Stormonth-Darling ◽  
...  

A series of experiments were undertaken using a multiple bar assembly to measure elastic follow-up and relaxation of an initial residual stress. A test rig was designed to permit different levels of elastic follow-up to occur. The general features of the experimental results confirmed predictions provided by simple models. The most reliable measure of elastic follow-up was obtained by measuring the relaxation of the initial residual stress. The rate of relaxation of the residual stress is found to be proportional to the elastic follow-up factor.

Author(s):  
A. M. Shirahatti ◽  
C. E. Truman ◽  
D. J. Smith

Components used in the power generation sector are often continuously exposed to high temperatures and corrosive environments. Failure processes, such as net section rupture, creep crack growth or fatigue crack growth therefore occur within the high temperature regime. The presence of residual stresses plays an important role in the subsequent failure of engineering components and structures. Residual stresses can arise from almost all manufacturing and fabrication processes and can also arise during service. Tensile residual stresses may combine with in-service loads to promote failure at a load the designer would view as safe. A quantitative understanding of how residual stresses interact with applied service loads is thus required for accurate safety assessments. In this paper a test rig based on a three bar structural model is used to introduce long range residual stresses in a 316H steel C(T) specimen at high temperature. The residual stresses induced are characterized easily without use of time consuming residual stress measurement techniques. The complete test rig is then subjected to an applied load. The magnitude of the residual and applied stress in the 316H C(T) specimen is a function of the initial misfit displacement, applied load and relative stiffness of the components of the test rig. The experimental results show that a test rig with a higher elastic follow-up value will have more crack growth compared to a rig with a lower elastic follow-up. Also, both tests demonstrate that as the crack grows, relaxation of residual stress in the C(T) specimen occurs, and it is compensated by a change in residual stress distribution in other parts of the rig. Furthermore, creep crack initiation data is compared with load controlled tests conducted. It is found that the time for the crack to initiate is increased in the case of mixed boundary conditions compared to load controlled conditions.


Author(s):  
Partha Rangaswamy ◽  
N. Jayaraman

Abstract In metal matrix composites residual stresses developing during the cool-down process after consolidation due to mismatch in thermal expansion coefficients between the ceramic fibers and metal matrix have been predicted using finite element analysis. Conventionally, unit cell models consisting of a quarter fiber surrounded by the matrix material have been developed for analyzing this problem. Such models have successfully predicted the stresses at the fiber-matrix interface. However, experimental work to measure residual stresses have always been on surfaces far away from the interface region. In this paper, models based on the conventional unit cell (one quarter fiber), one fiber, two fibers have been analyzed. In addition, using the element birth/death options available in the FEM code, the surface layer removal process that is conventionally used in the residual stress measuring technique has been simulated in the model. Such layer removal technique allows us to determine the average surface residual stress after each layer is removed and a direct comparison with experimental results are therefore possible. The predictions are compared with experimental results of an eight-ply unidirectional composite with Ti-24Al-11 Nb as matrix material reinforced with SCS-6 fibers.


1973 ◽  
Vol 95 (4) ◽  
pp. 238-242 ◽  
Author(s):  
S. Vaidyanathan ◽  
H. Weiss ◽  
I. Finnie

The residual stress distribution for a circumferential weld between cylinders was obtained in a prior publication for a full penetration, single pass weld with no variation of alloy content across the weld. In the present work the approach is extended to cover a wider variety of weld conditions. It is shown that the effects of multipass welds, partial penetration welds, and welds with filler metal differing greatly in properties from the base metal can approximately be taken into account. Experimental results are presented to support the proposed method of analysis.


1994 ◽  
Vol 116 (1) ◽  
pp. 1-7 ◽  
Author(s):  
W. Cheng ◽  
I. Finnie ◽  
M. Gremaud ◽  
M. B. Prime

In previous work it has been shown that near surface residual stresses may be deduced from surface strains produced by making a cut of progressively increasing depth. The process of electric discharge wire machining (EDWM), by providing very narrow cuts, greatly improves the ability of the method to resolve a stress gradient near the surface. However, the EDWM process may also introduce residual stresses. In the present work a model for estimating the influence of EDWM is presented, and a procedure for eliminating its effect on residual stress measurement is developed. Experimental results validate the theoretical approach.


2010 ◽  
Vol 652 ◽  
pp. 227-232
Author(s):  
Jesus Ruiz-Hervias ◽  
Jose M. Atienza ◽  
Javier R. Santisteban ◽  
Manuel Elices Calafat

This work shows the effect of the initial residual stress state on the stress relaxation behavior of cold-drawn steel rods. The evolution of residual strains at several locations along the rod diameter was measured in-situ by neutron diffraction during a stress relaxation experiment. It was found that if residual stresses are significant, stress relaxation is not homogeneous in the cross-section of the rods. This also explains the higher stress losses found in the rods with high residual stresses.


1994 ◽  
Vol 116 (3) ◽  
pp. 290-294 ◽  
Author(s):  
R. Seshadri

A simple method for estimating residual stresses using the GLOSS analysis is presented, and a shakedown assessment method is proposed. Practical pressure components exhibit some local elastic follow-up, and thereby induce smaller residual stresses than implied by uniaxial models. In this context, the effectiveness of “autofrettaging” is examined by studying a thick-walled cylinder subjected to an internal pressure. Modifications to the P + Q stress-intensity limit are suggested, and compared with Roche’s criterion. The method presented here is useful for configurations experiencing small to medium amounts of follow-up, which covers many practical situations.


Author(s):  
Liangbi Li ◽  
Torgeir Moan ◽  
Bin Zhang

Structural members of FPSO hulls often undergo fairly large static loading before they enter service or variable amplitude cyclic loading when they are in service. The combined effect of both applied stress and high initial residual stress is expected to cause shakedown of the residual stresses. Only a few papers seem to deal with appropriate procedures for fatigue analysis by considering the combined effect of variable amplitude cyclic loading with shakedown of residual stresses. Hence, the fatigue behaviour of welded joints in some experiments could not be explained reasonably well. In this paper, some typical welded connections in ship-shaped structures are investigated with 3-D elastic-plastic finite element analysis. The effect of residual stress relaxation, initial residual stress and the applied load after variable amplitude cyclic loading is revealed, and a formula for predicting the residual stress at hot spot quantitatively is proposed. Based on the formula, an improved fatigue procedure is introduced. The proposed fatigue procedure was validated against the experimental results. Therefore, the modified fatigue procedure could be applied to welded joints under arbitrary cyclic loading while accounting for shakedown of residual stresses.


2008 ◽  
Vol 571-572 ◽  
pp. 355-360 ◽  
Author(s):  
Funda S. Bayraktar ◽  
Peter Staron ◽  
Mustafa Koçak ◽  
Andreas Schreyer

The residual stress distribution in three laser welded T-joint configurations of aerospace aluminium alloys were measured using neutron diffraction and FE-simulation was conducted to compare with the experimental results. A 2 mm thick AA 6013 T6 sheet (as clip) was welded to a 4.5 mm thick and 400 mm wide AA 6156 T4 base plate (as skin of the airframe). In two samples, the thickness of the plate was reduced in some areas after welding to produce so-called “pockets” with the purpose of the weight reduction to resemble the fabrication practise in aircraft industry. The effect of pocketing process, which produced two different geometries around the clip weld on the residual stress evolution was analysed. In the plain sample (without pockets), residual stresses were predicted using the SYSWELD finite element software. The strain measurements on the base plate were performed at three locations; namely, the middle of the weld length (mid-clip), welding start (run-in) and end (run-out) locations. In all welded plates, slightly higher longitudinal tensile residual stresses were detected at the midclip locations, whereas transverse residual stresses were similar for all locations. In the run-out location, higher longitudinal tensile residual stresses were present than in the run-in location, which was the case in our previous results on other samples. The first results of the SYSWELD FE-simulation of the plain sample were compared with experimental results. The comparison has shown particularly good agreement for the transverse stresses. Although the simulation yields higher longitudinal tensile stresses than the experimental results, the stress distributions were very similar.


Sign in / Sign up

Export Citation Format

Share Document