Steering control of six-wheeled vehicles using linear quadratic regulator techniques

Author(s):  
B-C Chen ◽  
C-C Yu ◽  
W-F Hsu

The middle- and rear-wheel steering angles of a six-wheeled vehicle need to be coordinated with the front-wheel steering angle to obtain the maximum manoeuvrability. A steering control strategy using the linear quadratic regulator technique with integral control is proposed in this paper such that both zero side-slip angle and target yaw rate following can be achieved simultaneously. An estimator to be used with the control law is also designed to provide the estimate of side-slip angle. AutoSim is used to establish a complex vehicle model with tyre dynamics in MATLAB/Simulink. Both open-loop and closed-loop manoeuvres are performed to evaluate the control performance of the proposed strategy.

2013 ◽  
Vol 416-417 ◽  
pp. 909-913
Author(s):  
Qi Jia Liu ◽  
Si Zhong Chen

The aim of this article is to improve the brake stability of active rear wheel steering vehicle. The optimal theory of linear quadratic regulator is used to construct a controller, and the aim of the controller is to maintain the side slip angle is zero, and the control parameter is set according to the change of velocity when braking. An antilock brake model based on the door limit of wheel slip rate is constructed. The analysis is carried on a front wheel steering vehicle, which has two kinds of unti-lock mode. Meanwhile, an active rear wheel steering vehicle with two kinds of unti-lock mode is performed, also. All tests are performed on the bisectional road. The results of analysis show that the active rear wheel steering vehicle using the anti-lock mode of four wheels independent control can give the shortest braking distance, the smaller side slip angle and the smaller deviation from the lane. So it can give more contribution to the braking safety.


Author(s):  
Jeonghoon Song

This study proposes two enhanced yaw motion controllers that are modified versions of a braking yaw motion controller (BYMC) and a steering yaw motion controller (SYMC). A BYMC uses an inner rear-wheel braking pressure controller, while an SYMC uses a rear-wheel steering controller. However, neither device can entirely ensure the safety of a vehicle because of the load transfer from the rear to front wheels during braking. Therefore, an enhanced braking yaw motion controller (EBYMC) and an enhanced steering yaw motion controller (ESYMC) are developed, which contain additional outer front-wheel controllers. The performances of the EBYMC and ESYMC are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability, stability, and comfort of the vehicle. A non-linear observer and driver model also produce satisfactory results.


Author(s):  
Shih-Ken Chen ◽  
William C. Lin ◽  
Yuen-Kwok Steve Chin ◽  
Xiaodi Kang

This paper presents an analysis and comparison of a vehicle with active front steering and rear-wheel steering. Based on linear analysis of base vehicle characteristics under varying speed and road surfaces, desirable vehicle response characteristics are presented and a set of performance matrices for active steering systems is formulated. Using pole-placement approach, controllability issues under active front wheel steering and rear- wheel steering controls are discussed. A frequency response optimization approach is then used to design the closed-loop controllers.


2009 ◽  
Vol 16-19 ◽  
pp. 876-880
Author(s):  
Si Qi Zhang ◽  
Tian Xia Zhang ◽  
Shu Wen Zhou

The paper presents a vehicle dynamics control strategy devoted to prevent vehicles from spinning and drifting out. With vehicle dynamics control system, counter braking are applied at individual wheels as needed to generate an additional yaw moment until steering control and vehicle stability were regained. The Linear Quadratic Regulator (LQR) theory was designed to produce demanded yaw moment according to the error between the measured yaw rate and desired yaw rate. The results indicate the proposed system can significantly improve vehicle stability for active safety.


Author(s):  
Lijun Zhang ◽  
Chunmei Yu ◽  
Shifeng Zhang ◽  
Hong Cai

This paper presents an optimal attitude trajectory planning method for the spacecraft equipped with control moment gyros as the actuators. Both the fixed-time energy-optimal and synthesis performance optimal cases are taken into account. The corresponding nonsingular attitude maneuvering trajectories (i.e. open-loop control trajectories) with the consideration of a series of constraints are generated via Radau pseudospectral method. Compared with the traditional steering laws, the optimal steering law designed by this method can explicitly avoid the singularity from the global perspective. A linear quadratic regulator closed-loop controller is designed to guarantee the trajectory tracking performance in the presence of initial errors, inertia uncertainties and external disturbances. Simulation results verify the validity and feasibility of the proposed open-loop and closed-loop control methods.


Author(s):  
C. S. Nanda Kumar ◽  
Shankar C. Subramanian

Regenerative braking is applied only at the driven wheels in electric and hybrid vehicles. The presence of brake force only at the driven wheels reduces the lateral traction limit of the corresponding tires. This impacts the vehicle lateral response, particularly while applying the regenerative brake in a turn. In this paper, a detailed study was made on the impact of regenerative brake on the vehicle lateral response in front wheel drive and rear wheel drive configurations on dry and wet asphalt road surfaces. Simulations were done considering a typical set of vehicle parameters with the IPG CarMaker® software for different drive conditions and braking configurations along the same reference track. The steering wheel angle, yaw rate, lateral acceleration, vehicle slip angle, and tire forces were obtained. Further, they were compared against the conventional all wheel friction brake configuration. The regenerative braking configuration that had the most impact on vehicle lateral response was analyzed and response variations were quantified.


Author(s):  
Krishna Rangavajhula ◽  
H.-S. Jacob Tsao

A key source of safety and infrastructure issues for operations of longer combination vehicles (LCVs) is off-tracking, which has been used to refer to the general phenomenon that the rear wheels of a truck do not follow the track of the front wheels and wander off the travel lane. In this paper, we examine the effectiveness of command-steering in reducing off-tracking during a 90-degree turn at low and high speeds in an articulated system with a tractor and three full trailers. In command steering, rear front axles of the trailers are steered proportionately to the articulation angle between the tractor and trailing units. We then consider several control strategies to minimize off-tracking and rearward amplification of this system. A minimum rearward amplification ratio (RWA), as a surrogate for minimum off tracking, has been used as the control criterion for medium to high speeds to arrive at an optimal Linear Quadratic Regulator (LQR) controller. As for low speeds, the maximum radial offset between the tractor and trailer 3 is minimized in the design of the controller. Robustness of the optimal controller with respect to tyre-parameter perturbations is then examined. Based on the simulation results, we find that, active command steering is very effective in reducing off tracking at low- as well as high-speed 90-degree turns. To achieve acceptable levels of RWA and off tracking, at least two of the three trailers must be actively command-steered. Among the three two-trailer-steering possibilities, actively steering trailers 1 and 2 is most cost-effective and results in the lowest RWA for medium- to high- speeds (at which RWA is important), and off-tracking is practically eliminated for all speed regimes considered.


2014 ◽  
Vol 716-717 ◽  
pp. 1494-1499
Author(s):  
Wei Dong Li ◽  
Yi Zhang

By the analysis of the operational principle of electricity powered four-wheel steering system, a new system based on the fuzzy neural network. Since this is a complex multivariate and non-linear system, by making use of the characteristics of fuzzy control and the neural network, a fuzzy neural network can be established. The speed of car and front-wheel steering angle being the input and steering model being the output, the side-slip angle of the in the process of steering can be control to zero. At last, by emulating this system with the software Matlab/Simulink, it shows that self-healing control technology can effectively control the side-slip angle and improve the motility and stability of a car.


Sign in / Sign up

Export Citation Format

Share Document