Numerical simulation of the effect of a moving wall on separation of flow past a symmetrical aerofoil

Author(s):  
Y T Chew ◽  
L S Pan ◽  
T S Lee

This paper applies the numerical simulation technique based on the generalized conservation of circulation (GCC) method to investigate the effects of a leading-edge rotating circular cylinder on the suppression of stall flow past a symmetrical Joukowski aerofoil. The variables investigated were the angle of attack α and the ratio of the surface velocity of the cylinder to freestream velocity, CU. The Reynolds number based on chord length is 1.43 × 105. It was found that the separation point on the upper surface of the aerofoil shifts downstream with increasing CU and stall flow can be significantly suppressed even at α up to 30° when CU = 4. The lift coefficient CL increases and the drag coefficient Cd decreases with increasing CU and the optimum CL/ Cd occurs at α=80°. The maximum CL/ Cd obtained is about 60 at CU = 4.

Author(s):  
Kalyanjit Ghosh ◽  
R. J. Goldstein

A parametric study is conducted to investigate the effect of wall shear on a two-dimensional turbulent boundary layer. The shear is imparted by a moving belt, flush with the wall, translating in the flow direction. Velocity and mass transfer experiments have been performed for four surface-to-freestream velocity ratios (0, 0.38, 0.52, 0.65) with a Reynolds number based on the momentum thickness between 770 and 1776. The velocity data indicate that the location of the ‘virtual origin’ of the turbulent boundary layer ‘moves’ downstream towards the trailing edge of the belt with increasing surface velocity. The highest velocity ratio represents a case which is responsible for the removal of the inner region of the boundary layer. Mass transfer measurements downstream of the belt show the presence of a local minimum in the variation of the Stanton vs. Reynolds number for the highest velocity ratio. Downstream of this minimum, approximately 1 cm from the leading edge of the mass transfer plate, the characteristics of the turbulent boundary layer are restored and the data fall back on the empirical variation of the Stanton number with Reynolds number.


2001 ◽  
Vol 426 ◽  
pp. 263-295 ◽  
Author(s):  
RUPAD M. DAREKAR ◽  
SPENCER J. SHERWIN

Numerical investigations have been performed for the flow past square-section cylinders with a spanwise geometric deformation leading to a stagnation face with a sinusoidal waviness. The computations were performed using a spectral/hp element solver over a range of Reynolds numbers from 10 to 150.Starting from fully developed shedding past a straight cylinder at a Reynolds number of 100, a sufficiently high waviness is impulsively introduced resulting in the stabilization of the near wake to a time-independent state. It is shown that the spanwise waviness sets up a cross-flow within the growing boundary layer on the leading-edge surface thereby generating streamwise and vertical components of vorticity. These additional components of vorticity appear in regions close to the inflection points of the wavy stagnation face where the spanwise vorticity is weakened. This redistribution of vorticity leads to the breakdown of the unsteady and staggered Kármán vortex wake into a steady and symmetric near-wake structure. The steady nature of the near wake is associated with a reduction in total drag of about 16% at a Reynolds number of 100 compared with the straight, non-wavy cylinder.Further increases in the amplitude of the waviness lead to the emergence of hairpin vortices from the near-wake region. This wake topology has similarities to the wake of a sphere at low Reynolds numbers. The physical structure of the wake due to the variation of the amplitude of the waviness is identified with five distinct regimes. Furthermore, the introduction of a waviness at a wavelength close to the mode A wavelength and the primary wavelength of the straight square-section cylinder leads to the suppression of the Kármán street at a minimal waviness amplitude.


Author(s):  
Jonathan Kweder ◽  
Mary Ann Clarke ◽  
James E. Smith

Circulation control (CC) is a high-lift methodology that can be used on a variety of aerodynamic applications. This technology has been in the research and development phase for over sixty years primarily for fixed wing aircraft where the early models were referred to as “blown flaps”. Circulation control works by increasing the near surface velocity of the airflow over the leading edge and/or trailing edge of a lifting surface This phenomenon keeps the boundary layer jet attached to the wing surface thus increasing the lift generated on the surface. The circulation control airflow adds energy to the lift force through conventional airfoil lift production and by altering the circulation of stream lines around the airfoil. For this study, a 10:1 aspect ratio elliptical airfoil with a chord length of 11.8 inches and a span of 31.5 inches was inserted into the West Virginia University Closed Loop Wind Tunnel and was tested at varying wind speeds (80, 100, and 120 feet per second), angle of attack (zero to sixteen degrees), and blowing coefficients, ranging from 0.0006 to 0.0127 depending on plenum pressure. By comparing the non-circulation controlled wing with the active circulation control data, a trend was found as to the influence of circulation control on the stall characteristics of the wing for trailing edge active control. For this specific case, when the circulation control is in use on the 10:1 elliptical airfoil, the stall angle decreased, from eight degrees to six degrees, while providing a 70% increase in lift coefficient. It should be noted that due to the trailing edge location of the circulation control exit jet, a “virtual” camber is created with the free stream air adding length to the overall airfoil. Due to this phenomena, the actual stall angle measured increased from eight degrees on the un-augmented airfoil, to a maximum of twelve degrees.


Aerospace ◽  
2020 ◽  
Vol 7 (9) ◽  
pp. 123
Author(s):  
Sho Uranai ◽  
Koji Fukudome ◽  
Hiroya Mamori ◽  
Naoya Fukushima ◽  
Makoto Yamamoto

Ice accretion is a phenomenon whereby super-cooled water droplets impinge and accrete on wall surfaces. It is well known that the icing may cause severe accidents via the deformation of airfoil shape and the shedding of the growing adhered ice. To prevent ice accretion, electro-thermal heaters have recently been implemented as a de- and anti-icing device for aircraft wings. In this study, an icing simulation method for a two-dimensional airfoil with a heating surface was developed by modifying the extended Messinger model. The main modification is the computation of heat transfer from the airfoil wall and the run-back water temperature achieved by the heater. A numerical simulation is conducted based on an Euler–Lagrange method: a flow field around the airfoil is computed by an Eulerian method and droplet trajectories are computed by a Lagrangian method. The wall temperature distribution was validated by experiment. The results of the numerical and practical experiments were in reasonable agreement. The ice shape and aerodynamic performance of a NACA 0012 airfoil with a heater on the leading-edge surface were computed. The heating area changed from 1% to 10% of the chord length with a four-degree angle of attack. The simulation results reveal that the lift coefficient varies significantly with the heating area: when the heating area was 1.0% of the chord length, the lift coefficient was improved by up to 15%, owing to the flow separation instigated by the ice edge; increasing the heating area, the lift coefficient deteriorated, because the suction peak on the suction surface was attenuated by the ice formed. When the heating area exceeded 4.0% of the chord length, the lift coefficient recovered by up to 4%, because the large ice near the heater vanished. In contrast, the drag coefficient gradually decreased as the heating area increased. The present simulation method using the modified extended Messinger model is more suitable for de-icing simulations of both rime and glaze ice conditions, because it reproduces the thin ice layer formed behind the heater due to the runback phenomenon.


2016 ◽  
Vol 851 ◽  
pp. 532-537
Author(s):  
Nur Faraihan Zulkefli ◽  
Zulhilmy Sahwee ◽  
Nurhayati Mohd Nur ◽  
Muhamad Nor Ashraf Mohd Fazil ◽  
Muaz Mohd Shukri

This study was conducted to investigate the performance of passive and active vortex generator on the wing’s flap. The triangular shape of passive vortex generator (VG) was developed and attached on the wing’s flap leading edge while the plasma actuator performed as active vortex generator. The test was carried out experimentally using subsonic wind tunnel with 300 angles extended flap. Three different types of turbulent flow; with Reynolds number 1.5 x105, 2.0 x105, and 2.6x105 were used to study the aerodynamics forces of airfoil with plasma actuator OFF. All Reynolds number used were below 1x106. The result indicated that airfoil with plasma actuator produced higher lift coefficient 12% and lift-to-drag ratio 5% compared to airfoil with passive vortex generator. The overall result showed that airfoil with plasma actuator produced better lift forces compared to passive vortex generator.


2012 ◽  
Vol 16 (5) ◽  
pp. 1460-1464 ◽  
Author(s):  
Guo Huang ◽  
Haiming Huan ◽  
Xiaoliang Xu ◽  
Yu Liu

The vortex method is a direct numerical simulation method for solving the Navier-Stokes equations. In order to reveal the influence of Reynolds number and distances between the cylinders, the incompressible flow past a pair of tandem cylinders is solved on the base of the vortex method. The results show that for the flow past two tandem cylinders, there is a critical distance of the tandem cylinders. Over the critical distance, the flow field will have a sudden change, and the drag coefficient, lift coefficient and Strouhal number will also change dramatically. The critical distance will diminish as the Reynolds number rises.


2011 ◽  
Vol 676 ◽  
pp. 572-606 ◽  
Author(s):  
D. KOLOMENSKIY ◽  
H. K. MOFFATT ◽  
M. FARGE ◽  
K. SCHNEIDER

The Lighthill–Weis-Fogh ‘clap–fling–sweep’ mechanism for lift generation in insect flight is re-examined. The novelty of this mechanism lies in the change of topology (the ‘break’) that occurs at a critical instant tc when two wings separate at their ‘hinge’ point as ‘fling’ gives way to ‘sweep’, and the appearance of equal and opposite circulations around the wings at this critical instant. Our primary aim is to elucidate the behaviour near the hinge point as time t passes through tc. First, Lighthill's inviscid potential flow theory is reconsidered. It is argued that provided the linear and angular accelerations of the wings are continuous, the velocity field varies continuously through the break, although the pressure field jumps instantaneously at t = tc. Then, effects of viscosity are considered. Near the hinge, the local Reynolds number is very small and local similarity solutions imply a logarithmic (integrable) singularity of the pressure jump across the hinge just before separation, in contrast to the ‘negligible pressure jump’ of inviscid theory invoked by Lighthill. We also present numerical simulations of the flow using a volume penalization technique to represent the motion of the wings. For Reynolds number equal to unity (based on wing chord), the results are in good agreement with the analytical solution. At a realistic Reynolds number of about 20, the flow near the hinge is influenced by leading-edge vortices, but local effects still persist. The lift coefficient is found to be much greater than that in the corresponding inviscid flow.


2007 ◽  
Vol 591 ◽  
pp. 117-144 ◽  
Author(s):  
K. RYAN ◽  
M. C. THOMPSON ◽  
K. HOURIGAN

A tethered cylinder may be considered an extension of the widely studied problem of a hydro-elastically mounted cylinder. Here we numerically investigate the flow past a positively buoyant tethered cylinder for a range of mass ratios and tether length ratios at a Reynolds numberRe= 200. The results are found to be qualitatively similar to related experimental work performed at significantly higher Reynolds numbers. Two important findings are related in this paper. First, we find that the action of the tethered cylinder oscillating at an angle to the flow induces a mean lift coefficient. Second, a critical mass ratio (m*crit) is found below which large-amplitude oscillations are noted, similar to that previously reported for the case of a hydro-elastically mounted cylinder. For short tether lengths, (m*crit) is significantly greater than that found for a hydro-elastically mounted cylinder. As the tether length increases, the (m*crit) decreases and asymptotes to that of a hydro-elastically mounted cylinder as the tether length approaches infinity.


Sign in / Sign up

Export Citation Format

Share Document