Elastohydrodynamic analysis of double-layered journal bearings lubricated with couple-stress fluids

Author(s):  
M Lahmar

Elastohydrodynamic (EHD) analysis of a journal bearing with a realistic model for the bearing made of two distinct layers is extended to include couple-stress effects in lubricants blended with polymer additives. Based on the Stokes microcontinuum theory, a transient pressure differential equation (modified Reynolds' equation) is derived from the fluid motion equations and solved numerically. The elegant and powerful semi-analytical approach based on the complex variable theory developed in an earlier work is extended to solve linear elastostatics problems for a double-layered journal bearing. The EHD solution in isothermal conditions is obtained numerically by means of an iterative procedure. By the finite perturbation technique, the eight fluid-film stiffness and damping coefficients are determined. At the threshold of instability, the dynamic coefficients are used as input data for studying the linear stability of the rotor-bearing system. According to the results obtained, the influence of couple-stress parameter on the static and dynamic performance characteristics of the compliant journal-bearing system is physically apparent and not negligible. Compared with the Newtonian lubricants case, lubricants with couple-stresses provide an increase in the load-carrying capacity and stability, a reduction in the attitude angle and the friction factor. It is also found that the fluid-solid interaction effect on the performance characteristics is more important, especially for high values of couple-stress parameter and relative rigidity of liner-bush assembly.

2019 ◽  
Vol 8 (4) ◽  
pp. 4235-4240

After effects of studies led on a long porous partial journal bearing for couple stress fluid are thus displayed. Performance characteristics presently determined incorporate the time-height relationship, Fluid film force, Flow rate, frictional force alongside the coefficient of friction. Plan/Technique/Approach -The paper shows a solution for the squeeze film lubrication of a thick, porous, with couple stress fluid model. It is determined that the changed Reynolds condition inferred the fluid film pressures. The modified state of Reynolds equation is analytically solved and closed form expressions are shown for the time-height, the flow rate and friction force with frictional coefficient numerically with the given starting condition using MATLAB programming, the first non-linear equation in the time-height relationship is resolved. The effects on the squeeze film characteristics of couple stresses and permeability are discussed. Findings – It can be seen that the couple stress parameter enhances the bearing characteristics. The bearing performance can be improved with the increase of couple stress parameter ( l  ), eccentricity ratio (ϵ), permeability parameter (ψ). Additional study may be performed using the couple stress fluid model, including the magnetic effect with heat and mass transfer. This model can be used to compare further with other models such as micropolar fluid, rabinowitsch fluid and for comparative study, which models are the most suitable for improving bearing system performance.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Satish C. Sharma ◽  
Vikas M. Phalle ◽  
S. C. Jain

The multirecess noncircular hybrid journal bearings have been receiving wide importance in order to overcome the adverse effects on performance characteristics of multirecess circular journal bearings. During the lifetime of a machine, bearings are quite often required to be operated over a number of years and are subjected to several start and stop operations. As a consequence of this, the bush becomes progressively worn out and thereby changing the clearance space between journal and bearing. The present paper presents an analytical study investigating the effect of wear along with both aligned and misaligned conditions of journal on the performance of a capillary compensated three-lobe three-pocket hybrid journal bearing system for the various offset factors δ = 0.8,1.0, and 1.2. The wear caused on the bearing surface due to the transient (start/stop) operations has been modeled using Dufrane’s wear model. The modified Reynolds equation governing the flow of lubricant in the clearance space of a three-lobe multirecess worn hybrid journal bearing system along with both aligned and misaligned conditions of journal has been solved using an iterative scheme based on FEM. The influence of offset factor (δ), the wear depth parameter (δ¯w), and journal misalignment factors (σ¯,δ¯) on the performance of the three-lobe three-pocket hybrid journal bearing and three-pocket circular hybrid journal bearing system have been investigated. The results have been presented for the capillary compensated three-lobe three-pocket hybrid journal bearing system. The simulated results suggest that a bearing with a higher value of offset factor (δ>1) provides better static and dynamic performance characteristics as compared with a three-pocket circular journal bearing but the bearing with offset factor (δ < 1) is predominantly affected by the wear defect and misalignment of journal. The numerically simulated results suggest that the wear defect and offset factors significantly affect the bearing performance. Therefore, it becomes imperative to account for the influence of wear and offset factors during the design process so as to generate accurate data of bearing performance. The numerically simulated results have been presented in terms of maximum fluid-film pressure, minimum fluid-film thickness, lubricant flow rate, direct fluid-film stiffness, damping coefficients, and stability threshold speed margin. The present study demonstrates that the performance of bearing is significantly affected by wear along with both aligned and misaligned conditions of journal and the loss is partially compensated by keeping the offset factor δ>1.


Author(s):  
Niranjan Singh ◽  
RK Awasthi

This paper concerns with theoretical investigation to predict the influence of cylindrical textures on the static and dynamic performance characteristics of hydrodynamic journal bearing system and the performance is compared with smooth surface bearing. The Reynolds equation governing the fluid–film between the journal and the bearing surface is solved numerically with the assistance of finite element method and the performance characteristics are evaluated as a function of eccentricity ratio, dimple depth and its location. In this study, four journal bearing configurations viz: smooth (non-textured), full-textured, partially textured-I, and partially textured-II are considered for the evaluation of theoretical results. The simulated results indicate that the influence of surface textures is more significant when the textures were created in upstream zone of 126°–286° and dimple aspect ratio nearly 1.0.


Author(s):  
Prashant Kushare ◽  
Satish C. Sharma ◽  
S. C. Jain ◽  
J. Sharana Basavaraja

Multirecess hydrostatic/hybrid journal bearings are being used in many applications owing to their excellent characteristics. The Noncircular journal bearing configurations too are quite frequently used in high speed machinery as they are efficient, less costly and provide better shaft stability. The Two lobe bearing (elliptical bearing) are among the commonly used noncircular journal bearing configuration. The multilobe multirecess hybrid journal bearings have been developed to combine the features of noncircular and circular hybrid journal bearing configurations. In the present work a theoretical investigation of a two lobe multirecess hydrostatic/hybrid journal bearing system have been carried out. The multilobe journal bearing configuration is designed as an arc of the circle with the centre points placed on the symmetry line of the single lobe. The journal offset has been accounted by defining an offset factor ‘δ’. The finite element method has been used to solve the Reynolds equation governing the flow of lubricant in the clearance space of the journal bearing system. The bearing static and dynamic performance characteristics have been presented for the various values of the offset factors (0.75, 1, 1.25 and 1.50) for hybrid mode of operation of the bearing. The simulated results of the studies reveals that, a two lobe recessed hybrid journal bearing provides an improved performance in respect of fluid film stiffness and damping coefficients as compared to that of circular recessed journal bearing. It has been observed that for a multilobe bearing having offset factor more than one has a favourable effect on the dynamic performance characteristics of the two lobe bearing.


2019 ◽  
Vol 10 (6) ◽  
pp. 825-837
Author(s):  
Mushrek A. Mahdi ◽  
Ahmed Waleed Hussein

Purpose The purpose of this paper is to investigate the combined effect of wear and turbulence on the performance of a hydrodynamic journal bearing operating under Newtonian and couple stress fluids (CSF). Design/methodology/approach The analysis consists of a modified Reynolds equation of incompressible thin viscous films, and the film thickness model taking into account the wear effect. The governing equation was solved numerically using the finite difference approach. Findings The effect of both the wear parameter and the local Reynolds number on the performance characteristics of bearing has been presented and discussed. The obtained results observed that the characteristics of the intact and worn bearing in turbulent and laminar have been enhanced due to the non-Newtonian fluid (CSF) effect. Also, the results display that bearing worn and the turbulent regime cannot be neglected in calculating the performance characteristics of the bearing lubricated with Newtonian and non-Newtonian fluids. The results achieved from this study, specify that the bearing characteristics are significantly affected by these effects. Originality/value The paper investigates the behavior of hydrodynamic bearings considering different aspects simultaneously is interesting, and the application meets the current needs of improvement in modeling hydrodynamic bearings under different conditions.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
E. Rajasekhar Nicodemus ◽  
Satish C. Sharma

The objective of the present work is to study theoretically the influence of wear on the performance of four-pocket capillary-compensated hydrostatic journal bearing operating with micropolar lubricant. In the present study, the lubricant containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation for micropolar lubricant is solved using finite element method along with capillary restrictor flow equation as a constraint together with appropriate boundary conditions. The performance characteristics of a capillary-compensated four-pocket worn hydrostatic journal bearing operating with micropolar lubricant have been presented for a wide range of values of nondimensional external load, wear depth parameter, and micropolar parameters. The simulated results have also been presented for two different loading arrangements. In arrangement I, the load line acts through centers of the pockets, whereas in arrangement II, the load line bisects the land between two pockets. The simulated results suggest that a bearing lubricated with lubricant having higher micropolar effect has better static and dynamic performance characteristics as compared with Newtonian lubricant but the bearing lubricated with lubricant having higher micropolar effect is predominantly affected by the wear vis a vis static characteristics parameters as compared with Newtonian lubricant for both loading arrangements. However, in the case of stiffness and damping coefficients, loading arrangement II shows a significant higher enhancement in the value of direct stiffness and damping coefficients in z-direction due to micropolar effect as compared with load arrangement I. And also, the effect of wear on stiffness and damping coefficients in z-direction for bearing operating with micropolar lubricant is of same order as Newtonian lubricant for the loading arrangement II. A similar behavior is observed for the case of stiffness and damping coefficients in x-direction for loading arrangement I.


Author(s):  
Abhishake Chaudhary ◽  
Arvind K Rajput ◽  
Rajiv Verma

This article examines the effect of couple stress lubricant on the characteristics of six-pocket hybrid irregular journal bearing system. Various shapes of irregular journals viz. barrel, bell-mouth, and undulated journal are considered in the analysis. To model the behavior of the flow of couple stress lubricant in bearing clearance space, the modified form of Reynolds equation is derived by using Stokes theory. The unknown pressure field in Reynolds equation is determined by using Galerkin's method. To illustrate the effect of couple stress lubricant on bearing system, the results for characteristics parameters of journal bearing system are presented. The results noticeably reveal that the presence of different geometrical irregularities in journal may ominously influence the performance of bearing system. Further, the use of couple stress lubricant instead of Newtonian lubricant offers a significant improvement in the value of bearing characteristic parameters of geometrically irregular hybrid journal bearing system viz. [Formula: see text], [Formula: see text] and [Formula: see text].


1977 ◽  
Vol 99 (4) ◽  
pp. 478-484 ◽  
Author(s):  
D. V. Singh ◽  
R. Sinhasan ◽  
R. C. Ghai

Using finite element method steady state and dynamic performance of a capillary compensated hydrostatic journal bearing have been investigated. For stability studies, the critical mass of the bearing system has been determined by Routh’s criterion. The locus of the journal center has been predicted by discretizing time and numerically integrating the equations of motion governing the journal bearing system.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Suresh Verma ◽  
Vijay Kumar ◽  
K. D. Gupta

A comparative study on the performance characteristics of the flexible multirecess hydrostatic journal bearing system with constant flow valve and capillary restrictors has been presented considering the effect of micropolar parameters. The modified Reynolds equation for the flow of micropolar lubricant through the bearing has been solved using finite element method, and the resulting elastic deformation in the bearing shell has been determined iteratively. The results indicate that the micropolar parameters of the lubricant affect the performance of the flexible multirecess hydrostatic journal bearing system quite significantly.


Author(s):  
Ashutosh Kumar ◽  
SK Kakoty

Steady-state and dynamic performance parameters of three-lobe fluid film bearing, operating on TiO2 nanolubricant have been obtained. The effective viscosity for a given volume fraction of TiO2 nanoparticle in base fluid is obtained by using Krieger–Dougherty viscosity model. Various bearing performance parameters are obtained by solving remodeled Reynolds equation, which includes couple stress parameter. The stiffness and damping coefficients are also obtained for different values of the couple stress parameter. Results show a significant rise in the nondimensional load-carrying capacity and flow coefficient while there is a decrease in friction variable. It also reveals a significant improvement in the dynamic coefficient of bearing.


Sign in / Sign up

Export Citation Format

Share Document