A comprehensive study of the friction and dynamic motion of the piston assembly

Author(s):  
K Liu ◽  
Y. B. Xie ◽  
C. L. Gui

A mixed lubrication model based on a two-dimensional average Reynolds equation is presented in this paper. It is developed for use in conjunction with a piston secondary motion analysis. The motion has been studied and the effects of structure parameters and different profiles of piston skirts on the motion are also investigated. The friction force and power loss consisting of piston skirt friction and the friction of the piston ring pack are also given.

Author(s):  
K Liu ◽  
Y. B. Xie ◽  
C. L. Gui

Based on the two-dimensional average flow model and asperity contact model, a theoretical model for the non-axisymmetrical analysis of piston ring lubrication has been suggested in this paper. The two-dimensional distribution of oil-film thickness between the piston rings and cylinder wall is obtained. Results show that the oil-film thickness along the circumference is non-uniform. Starvation is also considered in the model. The effect of secondary motion of piston assemblies on the lubrication property of the piston ring pack has also been studied.


2019 ◽  
Vol 21 (9) ◽  
pp. 1647-1661 ◽  
Author(s):  
Cristiana Delprete ◽  
Abbas Razavykia ◽  
Paolo Baldissera

This article presents a detailed analytical model to evaluate piston skirt tribology under hydrodynamic lubrication. The contribution of the piston ring pack lubrication has been taken into account to study piston secondary motion and tribological performance. A system of nonlinear equations comprising Reynolds equation and force equilibrium is solved to calculate piston ring pack friction force and its moment about wrist pin axis. Instantaneous minimum oil film thickness at piston ring/liner interface has been estimated considering different boundary conditions: full Sommerfeld, oil separation, and Reynolds cavitation and reformation. The ring pack model has capability to be used for a wide range of ring face profiles under boundary and hydrodynamic lubrication. Piston secondary motion is evaluated using lubrication theory and equilibrium of forces and moments, to examine the effect of wrist pin location, piston skirt/liner clearance, and oil rheology. Numerical method and finite difference scheme have been used to define piston eccentricity and hydrodynamic pressure acting over the skirt.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


Author(s):  
Liang Liu ◽  
Tian Tian

A three-dimensional (3D) model for piston ring-pack dynamics and blow-by gas flow was developed to enable more in-depth analyses of the ring-pack performance. This model predicts the 3D dynamic behavior of compression rings and twin-land oil control ring due to the ring’s non-axisymmetric properties, bore distortion and piston secondary motion. Finite element beam theory is used for ring structure calculation. Gas flows along the axial and circumferential directions of the power cylinder system are resolved simultaneously with the ring dynamics. The model was applied to a heavy-duty diesel engine. Particular emphasis was placed on the dynamics of keystone type of top ring, and the stability of the second ring with a twist chamfer and twin-land oil control ring under the influence of piston secondary motion. The variations of the gas pressure and ring dynamic behavior along the circumference are discussed.


2014 ◽  
Vol 668-669 ◽  
pp. 205-208
Author(s):  
Xiao Ri Liu ◽  
Guo Xiang Li ◽  
Shu Zhan Bai ◽  
Yu Ping Hu

With consideration of asperity contact, the minimum oil film thickness and friction power loss are calculated by simultaneous solution of the dynamics, blow-by and lubrication of piston ring pack. Take the piston ring pack in the first cylinder from the free end of a six-cylinder diesel engine for example, results show that the asperity contact takes place at all of the compression rings and oil ring; the minimum oil film thickness is 1.04μm at the top ring; the total friction loss power is 0.94kW, the top ring accounts for 37.2%, the second ring accounts for 33.0%, the oil ring accounts for 29.8%.


Author(s):  
Kamel G Mahmoud ◽  
Oliver Knaus ◽  
Tigran Parikyan ◽  
Guenter Offner ◽  
Stjepan Sklepic

Piston rings are important components in internal combustion engines. Their primary function is to seal dynamically the gap between moving piston and cylinder liner surface in order to prevent the combustion gases from penetrating into the crankcase. The rings also control the oil leakage from the crankcase to the combustion chamber. The performance of the piston ring pack impacts the engine efficiency, durability and emissions. The recognition of the impact of the ring-pack performance on the engine design resulted in a sustained effort of research and development aimed at understanding the operation of the piston ring pack. Most of the published models developed in this field are two-dimensional assuming that the ring and liner are perfect circles for the purpose of modelling the axial and radial dynamics. Although this approach has proved to be useful, there exist a number of asymmetrical characteristics of the power cylinder system that can be crucial to the ring-pack performance and therefore it is considered to be appropriate. In this work, an integrated methodology that handles the complex ring-pack mechanism is presented. The physics of the ring-pack mechanism covers the three-dimensional piston ring dynamics of asymmetric engine cylinder due to bore distortion, the mixed lubrication at ring running face as well as the ring flanks and the interring gas dynamics. The modelling method is verified in two steps. In the first step, the dynamic behaviour of the three-dimensional ring model is verified against a commercial finite element software by comparing the eigenmodes up to a frequency of about 1 kHz. In the second step, the ring-pack modelling approach using three-dimensional ring models is also verified against a commercial ring dynamics program, which is based on the two-dimensional modelling. It is shown that the three-dimensional ring dynamics modelling method has advantages over the two-dimensional modelling approach as it facilitates studying the influence of the non-uniform twist along its circumference (ring winding), the effect of bore distortion on blow-by, ring friction, friction power losses and wear.


2012 ◽  
Vol 246-247 ◽  
pp. 1268-1272 ◽  
Author(s):  
Bin Wu ◽  
Zhi Nan Zhang ◽  
Ping Wang

In order to reduce ring-liner interface friction power loss, this paper focuses on the structure parameters of the top ring, and investigates how the value of those parameters will influence top ring-liner friction power loss and the minimum thickness of oil film at top ring-liner interface. A mixed lubrication model is developed to simulate the effect of varying design parameters on ring-liner friction. Case study shows that ring-liner friction power loss will be reduced with decreased axial ring height and barrel height. This study provides a theoretical basis for design the top ring with reduced friction power loss at ring-liner interface.


2003 ◽  
Vol 125 (2) ◽  
pp. 596-603 ◽  
Author(s):  
Y. Harigaya ◽  
M. Suzuki ◽  
M. Takiguchi

This paper describes an analysis of oil film thickness on a piston ring of a diesel engine. The analysis of the oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional energy equation with heat generated from viscous dissipation. The mean oil film temperature was determined from the calculation of the temperature distribution in the oil field which was calculated using the energy equation. The oil film viscosity was then estimated using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. Results show that the oil film thickness could be calculated using the viscosity estimated from the mean oil film temperature. The calculated values generally agree with the measured values. For higher engine speed conditions, the maximum values of the calculated oil film thickness are larger than the measured values.


Sign in / Sign up

Export Citation Format

Share Document