Paper 5: The Development of Centrifugal Gas Compressors for Process Plant Duty

Author(s):  
H. F. Ibbott

This paper describes the various types of centrifugal compressor used in process plants, and continues to discuss the more important components of these compressors and particular design features which are required to overcome some difficult operational problems. Items of particular interest include a discussion on the latest form of compressor rotor construction, the techniques required for balancing a rotor at full speed, and a detailed analysis of shaft gas seals and problems that can arise with gas seals under certain operating conditions. The paper also describes such special subjects related to process plant compressors as compressor selection and design by utilization of computers, methods of reducing time to produce compressor orders by discrete stockholdings; types of driver and shaft couplings used for these machines, and test facilities employed for centrifugal compressors which can be utilized to reduce commissioning periods at site.

Author(s):  
Ronald P. Porter

A high efficiency, low cost gas compressor is under development. Design has been completed and fabrication is in process. The manufacturer’s background in centrifugal compressor design and current methodology is discussed along with product definition. Assembly and test of the first unit is planned for summer 1996. The design features a single-stage overhung centrifugal compressor, variable inlet guide vanes, and dry gas seals.


Author(s):  
Mateusz Stajuda ◽  
David Garcia Cava ◽  
Grzegorz Liśkiewicz

Abstract This study intends to explore the capabilities of the cyclostationary approach for instabilities detection and operating conditions monitoring of centrifugal compressors. Cyclostationary approach offers powerful signal analysis methods, applicable to different processes. It was proven useful for analysis of vibration, acoustic and pressure data for systems exhibiting periodicity. Cyclostationarity has been used for extracting subtle changes between cycles of the periodic signal which could be used for condition monitoring. Recent research focuses on employing this method for fault indication. Cyclostationary approach has not been extensively used in the field of turbomachinery, except for a few cases when it was proven to give a better insight into flow structure than standard signal processing techniques and allow for the detection of instabilities in flow systems. Thus, the cyclostationary approach may be suitable for instabilities detection and condition monitoring in centrifugal compressors. This paper exploits various techniques employing a cyclostationary framework for instabilities detection and operating conditions monitoring with the use of pressure signals from the low-speed centrifugal compressor. The most prospective cyclostationarity-based indicators are applied for the detection of instabilities. Due to a lack of second-order cyclostationarity, the study confines to the analysis of first-order cyclostationarity strongly exhibited in the compressor pressure signal. First-order cyclostationarity analysis provides an indication of instabilities and working conditions differentiation, but due to time-domain sampling, it is not fully robust and reliable. The highest potential is perceived in the cyclostationary approach use to extract changes between cycles. Different measures of change in variability could serve as a valuable indicator of instabilities.


Author(s):  
Mounier Violette ◽  
Picard Cyril ◽  
Schiffmann Jürg

Domestic scale heat pumps and air conditioners are mainly driven by volumetric compressors. Yet the use of reduced scale centrifugal compressors is reconsidered due to their high efficiency and power density. The design procedure of centrifugal compressors starts with predesign tools based on the Cordier line. However, the optimality of the obtained predesign, which is the starting point of a complex and iterative process, is not guaranteed, especially for small-scale compressors operating with refrigerants. This paper proposes a data-driven predesign tool tailored for small-scale centrifugal compressors used in refrigeration applications. The predesign model is generated using an experimentally validated one-dimensional (1D) code which evaluates the compressor performance as a function of its detailed geometry and operating conditions. Using a symbolic regression tool, a reduced order model that predicts the performance of a given compressor geometry has been built. The proposed predesign model offers an alternative to the existing tools by providing a higher level of detail and flexibility. Particularly, the model includes the effect of the pressure ratio, the blade height ratio, and the shroud to tip radius ratio. The analysis of the centrifugal compressor losses allows identifying the underlying phenomena that shape the new isentropic efficiency contours. Compared to the validated 1D code, the new predesign model yields deviations below 4% on the isentropic efficiency, while running 1500 times faster. The new predesign model is, therefore, of significant interest when the compressor is part of an integrated system design process.


Author(s):  
Oscar De Santiago ◽  
Víctor Solórzano

Gas bearings are a promising technology for rotor support due to their inherent ability to work with process fluids in gas compression turbomachines. This feature has potential for eliminating oil systems, providing a clean operation and substantially reducing operating costs. This paper presents initial experiments of a 59 kg (130 lb) test compressor rotor supported on a pair of 90.20 mm (3.551 in) diameter metal-mesh foil bearings lubricated with ambient air in a rotordynamic test rig running at 9,000 rpm without gas compression. The configuration includes relocation of the bearing supports inboard of the gas seals to reduce bearing span, favoring a more stable configuration of the rotor-bearing system. Test foil bearings are designed to support static loads due to rotor weight and remnant imbalance levels. Test results show that the bearings are capable of supporting design loads and running at moderate vibration levels. A slow-growing subsynchronous vibration appears after a stable period at full speed as a result of top foil damage in the free end bearing during the run-up. This damage is due to lack of axial rotor constraints. The results of the experiments indicate that metal mesh foil bearings are a promising technology towards oil-free supported turbomachinery at larger scales than previously utilized.


2018 ◽  
Vol 245 ◽  
pp. 09004 ◽  
Author(s):  
Nikolai Sadovskiy ◽  
Leonid Strizhak ◽  
Anatoliy Simonov ◽  
Mikhail Sokolov

The results of computational investigation of the influence of a gas labyrinth seals, oil end seals with floating rings and oil journal bearings lubricating layer stiffness coefficient on centrifugal compressor rotor critical speed are presented and analysed. The main principles of a method for axial forces acting on centrifugal compressor rotor calculation are listed. The method has been developed at the compressor, vacuum and refrigeration technologies department of SPbSTU. In addition, the estimation of method applicability in engineering calculations is given.


2020 ◽  
Vol 10 (6) ◽  
pp. 1936
Author(s):  
Qian Zhang ◽  
Qiuhong Huo ◽  
Lei Zhang ◽  
Lei Song ◽  
Jianmeng Yang

The influence of four different vaneless diffuser shapes on the performance of centrifugal compressors is numerically studied in this paper. One of the studied shapes was a parallel wall diffuser. Two others had the width reduced only from hub and shroud and the rest had the width reduced from hub and shroud divided evenly. Then the numerical simulation was employed and the overall compressor aerodynamic performance was studied. The detailed velocity and pressure distribution and energy loss within the centrifugal compressor with different diffuser geometries and different operating conditions were analyzed. The results revealed that shroud pinch significantly improved the overall compressor aerodynamic performance more than any other pinch types, and the best performance can be achieved by pinched diffusers under the design condition compared with pinched diffusers under the near surge condition or choking condition. The range of energy loss, namely the static entropy area in the compressor, become reduced with the above three pinches diffusers.


Author(s):  
Klaus Brun ◽  
Sarah Simons ◽  
Rainer Kurz ◽  
Enrico Munari ◽  
Mirko Morini ◽  
...  

Centrifugal compressor impellers and shafts are subject to severe fluctuating axial and radial forces when operating in surge. These forces can cause severe damage to the close clearance components of a centrifugal compressor such as the thrust and radial bearings, interstage and dry gas seals, and balance piston. Being able to accurately quantify the cyclic surge forces on the close clearance components of the compressor allows the user to determine whether an accidental surge event, or emergency shutdown (ESD) transient, has caused damage requiring inspection, repair, or part replacement. For the test, a 700 hp (∼520 kW) industrial air centrifugal compressor was operated in surge at speeds ranging from 7000 to 13,000 rpm and pressure ratios from 1.2 to 1.8. The axial surge forces were directly measured using axial load cells on the thrust bearings. Suction and discharge pressures, proximity probe axial shaft position, flows, and temperatures were also measured. Time domain and frequency plots of axial vibration and dynamic pulsations showed the impact of the operating conditions on surge force amplitudes and frequencies. A surge severity coefficient was also derived as a simple screening tool to evaluate the magnitude of potential damage to a compressor during surge.


Author(s):  
Violette Mounier ◽  
Cyril Picard ◽  
Jürg Schiffmann

Domestic scale heat pumps and air conditioners are mainly driven by volumetric compressors. Yet the use of reduced scale centrifugal compressors is reconsidered due to their high efficiency and power density. Recent work has demonstrated the technical feasibility of a 20 mm centrifugal compressor on gas lubricated bearings operated with R134a by achieving isentropic efficiencies in excess of 75%. The design procedure of such centrifugal compressor starts by using pre-design tools based on the Cordier line. However, the optimality of the obtained pre-design, which is the starting point of a complex and iterative process, is not guaranteed, especially when small-scale compressors operating with organic fluids are targeted. This paper proposes an updated data-driven pre-design tool tailored for small-scale centrifugal compressors used in refrigeration applications. The pre-design model is generated using an experimentally validated 1D code which evaluates the compressor performance as a function of its detailed geometry and operating conditions. Using a symbolic regression tool, a reduced order model that predicts the performance of a given compressor geometry has been built. The proposed pre-design model offers an alternative to the tools available in literature by providing a higher level of detail and flexibility. Particularly, the model includes the effect of the pressure ratio PR and additional geometrical features such as blade height ratio b4 and the shroud to tip radius ratio r2s for addressing the inlet and exhaust areas. The analysis of the centrifugal compressor losses allows identifying the underlying phenomena that shape the new isentropic efficiency contours. As a consequence, for a specific operating condition, a compressor can have different geometries that yield the same efficiency. Low Ns compressors with high b4 are limited by blade loading and recirculation losses and operate closer to the surge limit. Compressors with low b4 and high Ns are exposed to high tip clearance and skin friction losses. Finally, the design space is limited at high Ns due to choke at the compressor inlet, while high incidence losses occur at low Ns at a constant r2s. Since incidence losses relate to the impeller inlet area, increasing r2s enables to achieve higher Ns, while decreasing r2s enables to explore lower Ns conditions. Compared to the 1D model the new pre-design model yields deviations below 4% on the isentropic efficiency, while running 1500 times faster. The new pre-design model is therefore of significant interest when the compressor is part of an integrated system design process.


Author(s):  
Klaus Brun ◽  
Sarah Simons ◽  
Rainer Kurz ◽  
Michele Pinelli ◽  
Mirko Morini ◽  
...  

Centrifugal compressor impellers and shafts are subject to severe fluctuating axial and radial forces when operating in surge. These forces can cause severe damage to the close clearance components of a centrifugal compressor such as the thrust and radial bearings, inter-stage and dry gas seals, and balance piston. Being able to accurately quantify the cyclic surge forces on the close clearance components of the compressor allows the user to determine whether an accidental surge event, or emergency shutdown (ESD) transient, has caused damage requiring inspection, repair, or part replacement. For the test, a 700 Hp (∼520 kW) industrial air centrifugal compressor was operated in surge at speeds ranging from 7,000 to 13,000 rpm and pressure ratios from 1.2 to 1.8. The axial surge forces were directly measured using axial load cells on the thrust bearings. Suction and discharge pressures, proximity probe axial shaft position, flows, and temperatures were also measured. Time domain and frequency plots of axial vibration and dynamic pulsations showed the impact of the operating conditions on surge force amplitudes and frequencies. A surge severity coefficient was also derived as a simple screening tool to evaluate the magnitude of potential damage to a compressor during surge.


Sign in / Sign up

Export Citation Format

Share Document