Dynamics Analysis of a Nuclear Boiler

1965 ◽  
Vol 180 (1) ◽  
pp. 417-449 ◽  
Author(s):  
P. K. M'Pherson ◽  
G. B. Collins ◽  
C. B. Guppy ◽  
A. Sumner

A dynamics analysis of a nuclear boiler based on a steam-generating, pressure-tube, heavy-water-moderated design is presented. In effect the plant is very similar to a La Mont recirculating cycle. A detailed mathematical model to represent plant dynamics (linearized, full power) is discussed with special reference to the boiling channel, steam drum, and recirculating loop. A simplified model is derived for analogue computer studies. Dynamic performance is discussed in terms of: (1) boiler only (no reactivity feedbacks): influence of pressure feedbacks, steam drum design, subcooling, recirculating delay; (2) complete plant (including reactor): as above but including influence of void coefficient. The two most important results are: (1) the strong dependence of plant behaviour/stability on the degrees of float allowed to pressure; (2) the possibility of designing an inherently stable and self-regulating plant with a small positive void coefficient. Finally, conclusions are drawn on the complete dynamic analysis under the heads: (1) optimal plant design; (2) control system design; (3) development of analytical/computing methods; (4) research into two-phase physics.

2020 ◽  
Author(s):  
Ziya Özkan ◽  
Ahmet Masum Hava

In three-phase three-wire (3P3W) voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional synchronous frame current control (CSCC) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes an inverse dynamic model based compensation (IDMBC) method to overcome these performance issues. Accordingly, a review of inductor saturation and core materials is performed, and the motivation on the use of saturable inductors is clarified. Then, two-phase exact modelling of the 3P3W VSC control system is obtained and the drawbacks of CSCC have been demonstrated analytically. Based on the exact modelling, the inverse system dynamic model of the nonlinear system is obtained and employed such that the nonlinear plant is converted to a fictitious linear inductor system for linear current regulators to perform satisfactorily.


Author(s):  
A. G. Thompson

Analogue computer studies of an automobile suspension on a simulated random road show that optimum ride and road holding can be achieved with linear damping for all magnitudes of road roughness. Unsymmetrical damping, however, provides better isolation from large bumps and obstacles at the expense of only very moderate increases in the mean-squared values for random inputs. Optimum values for the ratio of bump to rebound damping rates are obtained by use of an integral-square criterion. For a linear system the effects of the seat dynamics and road power spectrum characteristics are illustrated using the results of a digital computer program. The influence of the non-linearities on mean-square values is analysed theoretically and the statistical describing function method applied.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3526 ◽  
Author(s):  
Jieyan Chen ◽  
Chengxi Li

The increased interest in renewable wind energy has stimulated many offshore wind turbine concepts. This paper presents a design optimization and a coupled dynamics analysis of a platform with a single tether anchored to the seabed supported for a 5 MW baseline wind turbine. The design is based on a concept named SWAY. We conduct a parametric optimization process that accounts for important design considerations in the static and dynamic view, such as the stability, natural frequency, performance requirements, and cost feasibility. Through these optimization processes, we obtain and present the optimized model. We then establish the fully coupled aero-hydro-servo-elastic model by the time-domain simulation tool FAST (Fatigue, Aerodynamics, Structures, and Turbulence) with the hydrodynamic coefficients from an indoor program HydroGen. We conduct extensive time-domain simulations with various wind and wave conditions to explore the effects of wind speed and wave significant height on the dynamic performance of the optimized SWAY model in various water depths. The swivel connection between the platform and tether is the most special design for the SWAY model. Thus, we compare the performance of models with different tether connection designs, based on the platform motions, nacelle velocity, nacelle accelerations, resonant behaviors, and the damping of the coupled systems. The results of these comparisons demonstrate the advantage of the optimized SWAY model with the swivel connection. From these analyses, we prove that the optimized SWAY model is a good candidate for deep water deployment.


Author(s):  
Michael Pien ◽  
Steven Lis ◽  
Radha Jalan ◽  
Marvin Warshay ◽  
Suresh Pahwa

Higher efficiency operation of PEM fuel cells needs an advanced passive way to remove product water. Water flooding in gas flow channels reduces efficiency and needs to be mitigated by a support of balance of plant design and components which results in parasitic power losses. ElectroChem’s Integrated Flow Field (IFF) design with the integration of hydrophobic and hydrophilic matrix has been proven to solve these challenges with no impact on the performance. The hydrophobic and hydrophilic matrix facilitates two phase (gas and liquid) flow to and away from the interface between the electrode membrane assembly and the flow field. A phase-separation feature of the IFF allowed the fuel cells to operate on a flow rate at its consumption rate. The IFF fuel cell has demonstrated operation at the ideal one stoichiometric ratio with 100% gas utilization and orientation independent. The IFF also served as gas humidifier through the creation of simultaneous distribution of gas and water within the cell. The self-humidification capability keeps the cell operating without the humidity of the input gas. The IFF design also enhanced the performance of water electrolysis which is a reverse process of fuel cell. The IFF supported the passive water feed to the cell and gas separation from the cell.


2014 ◽  
Vol 10 (1) ◽  
pp. 59-74
Author(s):  
Zheng Feng Bai ◽  
Yang Zhao ◽  
Jun Chen

Purpose – The existence of clearance in joints of positioning mechanism is inevitable and the movements of the real mechanism are deflected from the ideal mechanism due to the clearances. The purpose of this paper is to investigate the effects of clearance on the dynamic characteristics of dual-axis positioning mechanism of a satellite antenna. Design/methodology/approach – The dynamics analysis of dual-axis positioning mechanism with clearance are investigated using a computational approach based on virtual prototyping technology. The contact model in joint clearance is established by using a hybrid nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the numerical simulation of dual-axis positioning mechanism with joint clearance is carried out and four case studies are implemented for different clearance sizes. Findings – Clearance leads to degradation of the dynamic performance of the system. The existence of clearance causes impact dynamic loads, and influences the motion accuracy and stability of the dual-axis positioning mechanism. Larger clearance induces higher frequency shakes and larger shake amplitudes, which will deteriorate positioning accuracy. Practical implications – Providing an effective and practical method to analyze dynamic characteristics of dual-axis positioning mechanism of satellite antenna with joint clearance and describing the dynamic characteristics of the dual-axis positioning system more realistically, which improves the engineering application. Originality/value – The paper is the basis of mechanism design, precision analysis and robust control system design of dual-axis positioning mechanism of satellite antenna.


2012 ◽  
Vol 710 ◽  
pp. 66-84 ◽  
Author(s):  
Dipankar Banerjee ◽  
Adam L. Pilchak ◽  
James C. Williams

We review the effect of processing on structure and texture in titanium alloys, focusing on the understanding of this relationship that has evolved over the last decade. Thermomechanical processing cycles for these alloys involve deformation and heat treatment in single phase β and two phase, α+β, phase fields, and involves a complex interplay between deformation and recrystallization textures of the individual phases, textures arising from the crystallographic relationship between the two phases, and the scale of microstructure evolution. We explore these interactions and trace the strong dependence of thermomechanical pathways on the final structure and texture.


Author(s):  
Jose March-Leuba ◽  
Weidong Wang ◽  
Tai L. Huang

Cores loaded with a mixture of fuel types are known to reduce stability margins. Mixed fuel cores have become more common as utilities change fuel suppliers, or when fuel vendors upgrade their fuel designs to take advantage of improved thermal and mechanical margins. This paper studies some of the physical processes that reduce the stability of mixed cores. A number of runs have been performed using the LAPUR6 stability code to evaluate the effect on mixed cores on the stability of a typical BWR. To this end, two fuel types have been set up with two different single-phase to two-phase pressure drop ratios by artificially adjusting the spacer and inlet orifice friction coefficients. The flow and pressure drop characteristics of both fuels have been matched at full flow, full power conditions. All manufacturers match the pressure drop of new fuels so that the flow distributions among the new and old fuel elements operating at the same power are approximately constant. The critical power ratio and thermo-mechanical criteria are typically limiting at full power; therefore matching the flow performance at full power maximizes the margin to these criteria. Stability is of concern at low flows, especially at natural circulation, where the thermal-hydraulic conditions are significantly different from full flow and power. Our simulations show that even if two fuel elements are perfectly matched at full flow, the axial void fraction distribution changes significantly when the flow is reduced to natural circulation conditions and the two fuel elements are not fully thermal-hydraulically compatible at the reduced flows. Basically, the two fuel types set up two separate natural circulation lines, and one of the fuel types essentially starves the other from flow. Since stability has such a strong dependence with channel flow, the reactor stability is controlled by the fuel type that has the smaller flow at natural circulation. A counterintuitive result of this study shows that, in general, loading a more stable fuel type into a mixed core has the opposite effect, and the stability margin of that mixed core is lower until the new, more stable fuel becomes dominant. Because of the burnable Gadolinium in most modern BWR fuels, the highest reactivity fuel elements are the once-burned. Loading a more stable fuel type starves the flow of the high-reactivity older fuel, reducing the stability margin.


2020 ◽  
Vol 3 (2) ◽  
pp. 2
Author(s):  
Claus Franz Wehmann ◽  
Marcello Reis ◽  
Meng Lou ◽  
Oskar Josef Haidn

As part of an effort to understand the conditions for the ignition of cryogenic propellants in the low pressure environment, we conducted a research of internal flow of cryogenic jet. In this paper, the experimental investigation was exerted focusing on the qualitative morphology study of the cryogenic flow inside the jet injectors. The test facilities were carefully designed and allow for visualization and characterization of the flow. The results show a strong dependence of mass flow rate on the fluid temperature. The two-phase flow was observed even for a long time chilling down of the injector. The Jacob number is proved to be a good indicator for the flow regimes, and the bubbles are present in the flow every time. The injector geometry has an influence on the flow rate, with the tapered injector demonstrating a higher flow rate than the sharp one.


Sign in / Sign up

Export Citation Format

Share Document